BAB V

HASIL ANALISIS DAN REKOMENDASI

5.1 Perhitungan Menggunakan WEKA

Weka adalah aplikasi yang digunakan sebagai algoritma machine learning untuk melakukan proses yang berkaitan dengan sistem temu kembali atau data mining.

Berikut adalah mengalgoritmakan data di WEKA

1. Merubah data excel menjadi data csv

Disini saya merubah data dengan cara save as kemudian menjadi data csv

2. Merubah data menjadi data arff

Disini saya menggunakan weka sebagai pengubah data dengan cara buka data

csv kemudian simpan akan ada tampilan seperti dibawah ini

🜍 Save	×
Look In: 📋 SKRIPSI) 🏠 🖀 🔳 👰
📄 data 📄 hasil.arff	Invoke options dialog
iurnal	Note:
📄 data anak.arff	Some file formats offer additional
data training.aff	options which can be customized when invoking the options dialog
File <u>N</u> ame: data anak melati iv.csv	
Files of Type: Arff data files (*.arff)	T
	Save Cancel

Gambar 5.1 Menyimpan Data Menjadi Arff di WEKA

Kemudian ganti .csv menjadi .arff lalu *save*. Hal ini juga saya lakukan pada data testing

3. Membuka data arff dan menggunakan algoritma *naive bayes*

Buka kembali data yang sudah berubah menjadi data arff kemudian klik *classify* maka akan ada tampilan seperti berikut

🚱 Weka Explorer	-	×
Preprocess Classify Cluster Associate Select attributes Visualize		
Classifier		
Choose ZeroR		
Test options Classifier output		
O Use training set		
O Supplied test set Set		
Cross-validation Folds		
O Percentage split % 66		
More options		
(Nom) gizi		
Start Stop		
Result list (right-click for options)		
Status		

Gambar 5.2 Tampilan Klasifikasi WEKA

Kemudian klik choose kemudian pilih bayes lalu klik naive bayes

4. Memasukan data tes

Klik tes option kemudian pilih supplied tes set kemudian klik set maka akan muncul tampilan seperti berikut

1	
Test Instances	- 🗆 X
Relation: None Instances: None	Attributes: None Sum of weights: None
Open file Open URL	
Class No class	
	Close

Gambar 5.3 Cara Memasukan Data Testing

Kemudian open file pilih data tes open kemudian pilih kelas gizi lalu close

Kemudian klik start maka akan muncul tampilan berikut

Prennorass Classify Cluster Associa	te Select attributes	Visualize								
assifier		viounee								
Choose NaiveBayes										
st options	Classifier output									
 Use training set 	Time taken to	build model	: 0 secon	nda						
Supplied test set Set	Evolution									
Cross-validation Folds 10	Evaluation	n on cest se								
O Percentage split % 66	Time taken to	test model	on suppli	led test set	: O seco	nds				
More options	Summary	-								
	Total Number	of Instances		0						
lom) gizi	Ignored Class	Unknown Ins	tances		10					
toniy gizi	Detailed	Accuracy By	Class ===							
Start Stop										
sult list (right-click for options)		TP Rate	FP Rate	Precision 2	Recall	F-Measure	MCC 2	ROC Area	PRC Area	C1
09:12:42 hoves NaiveRaves	1	?	?	?	?	?	?	?	?	ba
00.15.45 - Dayes.NaiveDayes		?	?	?	?	?	?	?	?	le
		?	?	?	?	?	?	?	?	bu
	Weighted Avg.	2	?	?	2	?	?	?	?	
	Confusion	Matrix								
	abcd <	- classified	as							
	00001a.	= kurang								
	000016:	= baik								
	000010	= lebih								
	000014	= buruk								
	4									7 H

Gambar 5.4 Hasil Perhitungan

Klik kiri pada hasil result lalu klik Visualize classifier error

Kemudian akan muncul tampilan seperti ini

				_
gizi (Nom)	•	Y: predicted gizi (Nom)		
olour: gizi (Nom)	v	Select Instance		
Reset Clear Open	Save	Jitter 🔾		_
l e b i n g kuurang baik		lebih buruk	Y	
ss colour				 -
	kuran	σ baik lebih buruk		

Gambar 5.5 Prediksi Data Mining

Save pada tempat yang di inginkan

5. Melihat hasil

Cara melihat hasil dengan weka adalah pada halaman awal weka klik *tools* klik ArffViewer maka akan terbuka suatu taampilan klik file lalu klik *open* cari dimana hasil perhitungan tadi lalu *open*

Ini lah hasil perhitungan dari data testing yang saya gunakan

1	da	ata anak t	testi	ng.arff						
F	elat	tion: data	trair	ning_predicte	d					
ш	No.	1: inisial	2: j	enis kelamin	3: umur/bulan	4: berat badan	5: keadaan	6: prediction margin	7: predicted gizi	8: gizi
		Nominal		Nominal	Numeric	Numeric	Nominal	Numeric	Nominal	Nominal
	1	d	р		35.0	9.5	N	-0.397004	baik	
н.	2	b	1		9.0	7.7	N	-0.787679	baik	
н.	3	с	р		15.0	7.9	т	-0.431508	baik	
II.	4	d	р		23.0	14.3	т	-0.652889	baik	
	5	r	1		40.0	11.9	N	-0.889826	baik	
II.	6	а	1		4.0	8.0	Т	-0.867135	baik	
	7	b	1		20.0	10.0	0	-0.558818	baik	
	8	g	р		16.0	9.0	N	-0.874631	baik	
	9	n	1		50.0	11.0	т	-0.736282	baik	
	10	а	р		13.0	7.6	т	-0.858481	baik	

Tabel 5.1 Hasil Perhitungan Naive Bayes Dengan WEKA

5.2 ANALISIS HASIL DAN PEMBAHASAN

Dari hasil perhitungan yang saya lakukan dengan mennggunakan weka kemudian saya pindahkan ke excel

					prediksi
inisial	jenis kelamin	umur / bulan	berat badan	keadaan	gizi
d	р	35	9.5	N	baik
b	1	9	7.7	N	baik
с	р	15	7.9	Т	baik
d	р	23	14.3	Т	baik
r	1	40	11.9	N	baik
a	1	4	8	Т	baik
b	1	20	10	0	baik
g	р	16	9	N	baik
n	1	50	11	Т	baik
a	р	13	7.6	Т	baik

Tabel 5.2 Hasil WEKA Yang Dipindahkan Ke Excel

Untuk melihat apakah hasil dari data diatas benar adanya seperti kenyataannya saya lakukan perbandingan dengan baku rujukan penilaian status gizi anak yang telah saya dapatkan dari kader posyandu sebagai berikut

	AN	AK PEREMP	UAN			A	NAKLAKLL	AKI	- Alt
Unnur	Gizl Buruk	Gizi Kurang	Gizi Baik	Gizi Lebih	Umur	Gizi Buruk	Gizi Kurang	Gizi Baik	Gizi Lebih
() (all	(N0)	(Kg)	(Kg)	(Kg)	(bulan)	(Kg)	(Kg)	(Kg)	/(Kg)
1	31	33 - 33	2.2 - 3.9	4.0	0	1.9	2.0 = 2.3	2.4 - 4.2	4,3
2	2.6	2.7 . 32	23 - 5.0	5,1	1	2,1	2.2 = 2.8	2.9 5.5	5.9
3	3.1	3.2 - 3.8	3.9 - 6.0	6,1	2	2,5	2.6 - 3.4	3.5 - 6.7	9.8
4	3.6	3.7 - 4.4	4.5 - 76	7.0	3	3.0	3.1 - 4.0	4.1 - 7.5	25
5	4.0	4.1 - 4.9	5.0 - 8.3	8.4		3,0	3.7 - 4.0	53 - 91	9.2
6	4.5	4.6 - 5.4	5.5 - 8.9	9.0	6	4.8	49 - 58	5.9 - 9.7	9.8
7	4.9	5,0 - 5,8	5.9 - 9.5	9.6	7	5.3	5.4 - 6.3	6.4 - 10.2	10.3
8	5.3	5.4 = 6.2	6.3 - 10.0	10.1	8	5,8	5.9 - 6.8	6.9 - 10.7	10,8
9	5.6	5.7 - 6.5	6.6 = 10.4	10.5	9	6.2	6.3 - 7.1	7.2 - 11.2	11.3
10	5.8	5.9 - 6.8	6.9 - 10.8	10.9	10	6.5	6.6 - 7.5	7.6 - 11.6	11.7
12	6.2	64 - 72	7.2 - 11.2	11.3	11	6.8	6.9 - 7.8	7.9 - 11.9	120
13	6.5	6.6 - 7.5	7.4 - 11.5	11.0	12	7.0	7.1 - 8.0	8.1 - 12.3	12.7
14	6.6	6.7 - 7.7	7.8 - 12 1	12.2	13	7.4	7.5 - 9.4	8.5 - 12.9	13.0
15	6.8	6.9 - 7.9	8.0 - 12.3	12,4	15	7.5	7.6 - 8.6	8.7 - 13.1	13.2
16	6.9	7.0 - 8.1	8.2 - 12.5	12.6	16	7.6	.7.7 - 8.7	8.8 - 13.4	13.5
17	7.1	7.2 - 8.2	8.3 - 12.8	12.9	17	7.7	7.8 - 8.9	9.0 - 13.6	13.7
18	7.2	7.3 - 8.4	8.5 - 13.0	13.1	18	7.8	7.9 - 9.0	9.1 - 13.8	13.9
19	7.4	7.5 - 8.5	8.6 - 13.2	13.3	19	7.9	8.0 - 9.1	9.2 - 14.0	19,1
20	7.5	7.6 - 8.7	8.8 - 13.4	13.5	20	8.0	8.1 - 9.3	9.4 - 14.3	14.4
22	7.0	7.9 - 9.0	9.1 - 13.7	13.8	21	8.2	84 96	9.7 - 14.7	14.8
23	8.0	8.1 - 9.2	9.3 - 14 1	14.2	22	8.4	8.5 - 9.7	9.8 - 14.9	15.0
24	8.2	8.3 - 9.3	9.4 - 14.5	14.6	24	8.9	9.0 - 10.0	10.1 - 15.6	15.7
25	8.3	8.4 - 9.5	9.6 - 14.8	14.9	25	8.9	9.0 - 10.1	10.2 - 15.8	15.9
26	8.4	8.5 - 9.7	9.8 - 15.1	15.2	26	9.0	9.1 - 10.2	10.3 - 16.0	16.1
27	8.6	8.7 - 9.8	9.9 - 15.5	15.6	27	9.0	9.1 - 10.3	10.4 - 16.2	16.3
28	8.7	8.8 - 10.0	10.1 - 15.8	15.9	28	9.1	9.2 - 10.4	10.5 - 16.5	16.0
29	8.8	8,9 - 10.1	10.2 - 16.0	16.1	29	9.2	9.3 - 10.5	10.0 - 10.7	17.0
30	8.9	9.0 - 10.2	10.5 - 16.5	16.7	30	9.3	9.4 - 10.8	10.9 - 17.1	17.2
31	9.0	9.2 - 10.5	10.6 - 16.9	17.0	32	9.4	9.5 - 10.9	11.0 - 17.3	17.4
33	5.9	9.4 - 10.7	10.8 - 17.1	17.2	33	9.5	9.6 - 11.0	11.1 - 17.5	17.6
34	9.4	9.5 - 10.8	10.9 - 17.4	17.5	34	9.6	9.7 - 11.1	11.2 - 17.7	17.8
35	9.5	9.6 - 10.9	11.0 - 17.7	7 17.8	35	9.6	9.7 - 11.2	11.3 - 17.9	18.0
36	9.6	9.7 - 11.1	11.2 - 17.9	9 18.0	36	9.7	9.8 - 11.3	11.4 - 18.2	18.3
37	9.7	9.8 - 11.2	11.3 - 18.2	18.3	37	9.8	9.9 - 11.4	11.5 - 18.4	18.7
38	9.8	9.9 - 11.3	11.4 - 18.4	18.5	38	9.9	10.1 - 11.7	11.8 - 18.8	18.9
39	9.9	10.0 - 11.4	11.5 - 18.6	19.7		10.0	10.2 - 11.8	11.9 - 19.0	19.1
40	10.0	10.1 - 11.5	11.8 - 10 1	19.2	4	1 10.2	10.3 - 11.9	12.0 - 19.2	19.3
41	10.1	10.2 - 11.7	11.9 - 19.5	3 19.4	4	2 10.3	10.4 - 12.0	12.1 - 19.4	19.5
42	10.2	10.4 - 11.9/	12.0 - 19.5	5 19.6	4.	3 10.4	10.5 - 12.2	12.3 - 19.6	19.7
43	10.3	10.5 - 12.0	12.1 - 19.7	7 19.8	4	4 10.5	10.6 - 12.3	12.4 - 19.8	19.9
45	10.5	10.6 - 12.1	12.2 - 20.0	20.1	4	5 10.6	10.7 - 12.4	12.5 - 20.0	20.1
46	10.6	10.7 - 12.2	12.3 - 20.2	2 20.3	4	6 10.7	10.8 - 12.5	12.6 - 20.3	20.4
47	10.7	10.8 - 12.4	12.5 - 20.4	4 20,5	4	/ 10.8	10.9 - 12.7	12.9 - 20.	7 20.8
48	10.8	10.9 - 12.5	12.6 - 20.0	5 20.7	4	9 11.5	11.0 - 12.0	13.0 - 20.4	9 21.0
49	10.8	10.9 - 12.6	12.7 - 20.8	20.9	4	0 111	11.2 - 13.0	13.1 - 21.	1 21.3
50	10.9	11.0 - 12.7	12.8 - 21.0	21.1	5	1 11.7	11.3 - 13.2	13.3 - 21.	3 21.
51	11.0	11.1 - 12.8	12.9 - 21.	4 21.5	5	2 11.3	11.4 - 13.3	13.4 - 21.	6 21.
52	11.1	11.2 - 12.9	13.0 - 21.	6 21.7	5	3 11.4	11.5 - 13.4	13.5 - 21.	8 21.
53	11.2	11.3 - 13.0	13.2 - 21.9	3 21.9	5	4 11.5	5 11.6 - 13.6	13.7 - 22.	0 22.
54	11.3	11.4 - 13.1	13.3 - 22.	1 22.2	5	5 11.7	7 11.8 - 13.7	13.8 - 22.	2 22.
55	11.4	11.5 - 13.2	13.4 - 22.1	3 22.4	5	6 11.8	8 11.9 - 13.8	3 13.9 - 22.	5 22.
56	11.4	11.5 - 13.5	13.5 - 22.5	5 22.6	5	7 11.9	9 12.0 - 14.0	14.1 - 22.	2 22
57	11.5	117 - 135	13.6 - 22.	7 22.8	5	8 12.0	0 12.1 - 14.1	14.2 - 22	2 23
58	11.0	11.8 - 13.6	13.7 - 22.9	9 23.0	5	9 12.	1 12.2 - 14.	2] 19.3 - 23.	4 23

Gambar 5.6 Baku Rujukan Penilaian Status Gizi Anak

Berikut adalah data yang didapatkan setelah di cocokan dengan baku rujukan penilaian status gizi anak

inisial	jenis kelamin	umur / bulan	berat badan	keadaan	prediksi gizi	gizi	akurasi
d	р	35	9.5	N	baik	buruk	tidak
b	1	9	7.7	N	baik	baik	ya
с	р	15	7.9	Т	baik	kurang	tidak
d	р	23	14.3	Т	baik	lebih	tidak
r	1	40	11.9	Ν	baik	baik	ya
а	1	4	8	Т	baik	baik	ya
b	1	20	10	0	baik	baik	ya
g	р	16	9	Ν	baik	baik	ya
n	1	50	11	Т	baik	kurang	tidak
a	р	13	7.6	Т	baik	baik	ya

Tabel 5.3 Hasil WEKA Yang Telah Dicocokan Dengan Baku Rujukan Status Gizi Anak

Maka dari itu saya lakukan perhitungan tingkat akurasi dan *error* dari data *testing* yang saya gunakan :

 $akurasi = \frac{data \ yang \ benar}{data \ yang \ di \ uji} *100\% = \frac{6}{10} * 100\% = 60\%$

$$error = \frac{data \ yang \ salah}{data \ yang \ di \ uji} *100\% = \frac{4}{10} * 100\% = 40\%$$

Dari perhitungan diatas dapat dilihat bahwa data testing yang dipakai memiliki keakurasian 60% dan *error* 40% sehingga dapat disimpulkan bahwa data training yanng digunakan cukup layak dipakai namun lebih baik tidak digunakan karna masih banyak kekurangan data yang mirip