BAB V

IMPLEMENTASI DAN PENGUJIAN SISTEM

5.1 HASIL IMPLEMENTASI

Pada tahap ini penulis mengimplementasikan hasil rancangan yang telah dibuat. Adapun hasil implementasi dari penelitian ini dapat dilihat pada gambar 5.1.

Gambar 5.1 Prototype Perancangan Alat Pengukur Suhu Panas

Pada gambar 5.1 merupakan bentuk fisik dari alat pengukur suhu panas yang telah di buat oleh penulis. Terlihat pada gambar terdapat satu buah kotak hitam di atasnya ada LCD 16x2, Kompor gas listrik, dan juga gas untuk memasaknya. Pada

box hitam itu sendiri di dalamnya terdapat rangkaian keseluruhan alat yang telah di rancang oleh penulis sebelumnya.

Gambar 5.2 Gambar Kompor Gas Listrik dan Gas Tabung

Untuk gambar berikut ini, penulis menggunakan kompor gas listrik beserta gas tabung sebagai pemanas dari minyak yang nantinya akan di panaskan, adapun kompor gas ini digunakan agar lebih memudahkan bagi penulis dari segi mobilitas ketika hendak di bawa kemana mana.

Dan yang terakhir adalah Pada box hitam, yang mana dapat dilihat pada gambar, terdapat LCD 16x2 di atas box hitam tersebut dan juga tombol berwarna hijau, serta relay. Adapun LCD 16x2 ini berfungsi sebagai untuk menampilkan hasil output dari sensor suhu minya RTD PT100.

Gambar 5.3 Box Hitam Tempat Rangkaian Keseluruhan

5.2 PENGUJIAN *WHITE BOX* PERANGKAT LUNAK

Pengujian *white box* didasarkan pada pengecekan terhadap detail perancangan, menggunakan struktur kontrol dari desain program secara prosedur untuk membagi pengujian ke dalam beberapa kasus pengujian.

Hal pertama yang dilakukan dalam pengujian perangkat lunak adalah memberikan tegangan sumber ke alat, dan memastikan semua kondisi dari alat dalam keadaan baik.

Pengujian perangkat lunak dilakukan untuk mendapatkan informasi mengenai kemampuan perangkat lunak yang digunakan dalam penelitian. Untuk bahasa pemograman c++ arduino pengujian meliputi pembuatan file baru, tahap menulis kode dan terakhir ialah mengkompilasi dan mengupload program. Adapun tahapan-tahapan tersebut adalah sebagai berikut :

1. Arduino Ide

Gambar 5.4 File Baru Arduino

Tahapan ini merupakan tahapan utama, karena dalam tahapan ini dibuat alur sistem yang akan diimplementasikan. Tahapan ini dapat dilihat pada gambar 5.5 :

Gambar 5.5 Menulis Kode Arduino

Setelah membuat alur sistem yang ingin di implementasikan, pada tahap akhir ini dilakukan proses kompilasi dari kode c++ ke dalam hexa. File hexa inilah yang akan diupload kedalam *hardware* diarduino. Kompilasi program dilakukan agar arduino bisa mengeksekusi kode yang sudah dibuat. Proses kompilasi dan upload kode dapat dilihat dalam gambar 5.6 sebagai berikut :

Gambar 5.6 Proses Compile dan Upload

2. Tampilan Menu Login

Pada gambar 5.7, merupakan tampilan *interface* menu login, yang mana user harus memasukkan akun yang sudah ada untuk bisa login ke aplikasi dan memantau kondisi dari suhu minyak penggorengan, adapun gambarnya dapat di lihat pada tampilan monitoring website dibawah ini :

• C A Internet Modellage entry d	arrist hag tylteling the		Pr 🕁 🔲 🙆 Hangalita
	internet of Thir	gu	
	Laurante		
	Referred	*	
	2	age 1	
	-		

Gambar 5.7 Tampilan Menu Login

3. *Interface* Monitoring Suhu Minyak pada Penggorengan (Grafik)

Selanjutnya adalah tampilan *interface* dashboard, yang mana setelah login maka akan muncul tampilan grafik yang mana grafik ini adalah hasil pembacaan dari sensor suhu minyak (RTD PT100), adapun tampilan websitenya dapat di lihat pada gambar dibawah ini :

Gambar 5.8 Tampilan Interface Website Suhu Penggorengan (Grafik)

4. *Interface* Monitoring Suhu Minyak pada Penggorengan (Tabel)

Dan untuk yang terakhir merupakan tampilan *interface* suhu minyak pada penggorengan dalam bentuk tabel, selain dalam bentuk grafik, penulis juga menyajikan dalam bentuk tabel yang dapat di lihat pada gambar berikut :

e a	A fait incurs Monthelika go welling al infrational	oʻyogar Asana rashisi propi tahadi shardisi kwiti batçırasını 2000 trasız Xanazi D	ti 🔲 🙆 konpré
Nit.	Narta	WOREL	nia
1.	Status Micropali	2023401-12 10028-05	21.60
2	Suite Integrati	2023-011/12 (0.0016	28. 6 C
3	Sutha Silingan	2003-01-12,12003-08	28.60
4	Survey indeep and	2023-07-12 10:03-87	25.45
5	guina akryaw.	2023-01-12-10-04/18	27 6 C
6	Suna Minjani.	2003-01112-(0:04-01)	28.64
τ.	Subs. Mitpati	2003-01112-10:05:03	27- 0 C
8	Suna Megan	2023-01-12 (8:05:05	2640
+	Suma Menyaki	2022-01-1210-0656	11 e C
*	June Merper	2003/9-011-12.100021116	27.61
11	Sutra Mirgain	2023-01-12-10-02-05	21.00
12	Turky Merguni.	2003-01-12 (807-96	28 6 C
18	Suma Manjan	2023-01112-10.00012	16.44
14	Suris Mitput	2003-01112-16:08:34	26.440
15	Suns Meyer	2023-01-12 10:08:55	25.44
18	Soins Minyan	2023-01-12 10:00:14	18. 4 C
17	Solid Heliber	2023-01-12-10-000	25 OC
1	Subs Minaki	2023-01-12 10:00/01	27.00

Gambar 5.9 Tampilan *Interface* Website Suhu Penggorengan (Tabel) 5.3 PENGUJIAN *BLACK BOX* PERANGKAT LUNAK

Black Box Testing atau yang sering dikenal dengan sebutan pengujian fungsional merupakan metode pengujian Perangkat Lunak yang digunakan untuk menguji perangkat lunak tanpa mengetahui struktur internal kode atau Program.

Pada *Black Box Testing* dilakukan pengujian yang didasarkan pada detail aplikasi seperti tampilan aplikasi, fungsi-fungsi yang ada pada aplikasi, dan kesesuaian alur fungsi dengan proses yang diinginkan.

Pengujian *Black box* ini lebih menguji ke Tampilan Luar (*Interface*) dari suatu aplikasi agar mudah digunakan oleh *Customer*. Pengujian ini tidak melihat dan menguji *source code program*. Pengujian *Black box* bekerja dengan mengabaikan struktur kontrol sehingga perhatianya hanya terfokus pada informasi *domain*. Hasil pengujian dengan metode Black Box dapat dilihat pada tabel 5.1:

Tabel 5.1 Pengujian Black Box

No	Skenario	Test Case	Hasil yang	Hasil	Status
INO	Pengujian	Test Case	diharapkan	Pengujian	Status
1	Mengosongkan	Username :	Sistem akan	Sesuai	Valid
	semua isian data	-	menolak	harapan	
	login, lalu	Password : -	akses login		
	langsung mengklik		dan		
	tombol 'Login'.		menampilkan		
			pesan "Login		
			gagal"		
2	Hanya mengisi	Username :	Sistem akan	Sesuai	Valid
	data Username	novian	menolak	harapan	
	admin dan	Password : -	akses login		
	mengosongkan		dan		
	data password, lalu		menampilkan		
	langsung mengklik		pesan "Login		
	tombol 'Login'.		gagal"		
3	Memasukkan data	Username :	Sistem akan	Sesuai	Valid
	login yang benar	novian	menerima	harapan	
	dan mengklik	Password :	akses login		
	tombol 'Login'.	novian	dan		
			menampilkan		
			Dashboard		
			aplikasi		
			website.		
4	Masuk ke halaman	-	Dashboard	Sesuai	Valid
	Dashboard Project		menampilkan	harapan	
			grafik		
			pembacaan		
			sensor suhu		
			minyak,		

			adapun grafik		
			ini sesuai		
			kondisi dari		
			pembacaan		
			sensor		
5	Masuk ke dalam	Klik "Lihat	Menampilkan	Sesuai	Valid
	Detail tabel suhu	detail tabel	lebih detail	harapan	
	minyak	suhu	grafik sensor		
		minyak"	suhu minyak,		
			yang mana		
			bukan hanya		
			tampilan		
			grafik saja		
			yang di		
			berikan,		
			tetapi juga		
			dalam bentuk		
			tabel yang		
			dapat di lihat		
			berdasarkan		
			waktu dari		
			kondisi		
			pemanasan		
			suhu minyak		
			tersebut,		

5.4.1 Pengujian Tegangan Sumber

Tahap pertama yang dilakukan adalah pengujian tegangan sumber, yang mana tegangan sumber di hasilkan dari adaptor. Hasil pengujian tegangan yang dihasilkan oleh adaptor dapat dilihat pada tabel 5.2.

Tabel 5.2 Pengujian Tegangan Sumber

Sumber Arus	Tegangan <i>Input</i>	Tegangan <i>Output</i>
Adaptor	5 V	4,92 V

5.4.2 Pengujian Tegangan NodeMCU

Setelah melakukan pengujian tegangan sumber, selanjutnya menguji tegangan nodemcu, yang mana untuk mengetahui berapa besar arus yang di gunakan nodemcu untuk menjalankan alat. Pada pengujian arduino uno ini dilakukan dengan beban ataupun tanpa beban.

Tabel 5.3 Pengujian Tegangan NodeMCU ESP8266

Sumber	Beban	Tegangan Input	Tegangan Output
Nodemcu esp8266	Tanpa Beban	5 V	4.85 V
	Dengan Beban	5 V	4.57 V

5.4.3 Pengujian Sensor Suhu Minyak (RTD PT100)

Setelah melakukan pengujian tegangan sumber, dan melakukan pengujian tegangan nodemcu esp8266, selanjutnya pengujian sensor suhu minyak RTD PT100, pengujian bertujuan untuk melihat sejauh mana sensor bekerja dengan baik. Sensor suhu minyak (RTD PT100) ini digunakan untuk mendeteksi berapa derajat suhu minyak yang ada pada penggorengan. Hasil pengujian yang dihasilkan oleh sensor suhu minyak dapat dilihat pada tabel 5.4

Tabel 5.4 Pengujian Sensor Suhu Minyak (RTD PT100)

Percobaan Ke	Waktu	Nilai Suhu	Status Sensor
1	2023-01-12 10:03:25	28°C	Aktif
2	2023-01-12 10:03:36	28°C	Aktif
3	2023-01-12 10:03:46	28°C	Aktif
4	2023-01-12 10:03:57	28°C	Aktif
5	2023-01-12 10:07:16	27°C	Aktif

5.4.4 Pengujian ESP Wifi

Pada pengujian esp wifi dilakukan dengan memasukkan beberapa perintah kedalam modul wifi melalui komunikasi serial menggunakan perintah AT *Command*. Perintah AT *Command* dapat dilihat pada tabel 5.5 :

Tabel 5.5 Pengujian ESP Wifi

Perintah AT Command	Keterangan
AT+RST	Reset Module
AT+CWMODE	Configure As Access Point
AT+CIPSERVER	Turn On Server On Port 80
AT+CIPMUX=1	Configure For Multiple
	Connections
AT+CIFSR	Get Ip Address

5.5 ANALISIS SISTEM SECARA KESELURUHAN

Untuk mendeteksi apabila terjadi kesalahan setelah uji coba, maka perlu dilakukan analisa rangkaian secara keseluruhan. Dari seluruh proses yang telah dilakukan, baik pengujian perangkat keras maupun perangkat lunak, dapat dikatakan bahwa alat ini dapat berfungsi sebagaimana yang penulis inginkan. Proses pembacaan sensor suhu minyak (RTD PT100) tidak terjadi kesalahan pembacaan data, dan juga untuk hasil atau output dari sensor suhu minyak (RTD PT100) dapat di tampilkan pada LCD 16x2. Pengujian ini dilakukan untuk menunjukan bahwa sistem yang telah di buat oleh penulis dapat bekerja sesuai dengan tujuan dari pembuatan. Pengujian ini dilakukan dengan cara sebagai berikut :

- 1. Sensor suhu minyak (RTD PT100) bekerja dengan baik, yaitu dapat mendeteksi suhu minyak goreng yang sedang di panaskan. Selanjutnya sensor akan mengirimkan berupa sinyal digital, yang mana hasil atau *output* dari sensor suhu minyak ini dapat di lihat atau di tampilkan pada layar Lcd 16x2.
- 2. Sementara itu untuk hasil dari sensor suhu tersebut juga akan dapat termonitoring atau terpantau melalui aplikasi website dalam bentuk grafik dan juga disediakan dalam bentuk tabel.