#### BAB V

### HASIL ANALISIS DAN PEMBAHASAN

#### 5.1 PROFILE RESPONDEN

Pengumpulan data dilakukan dengan menggunakan kuesioner online yaitu dengan cara membagikan kuesioner melalui social media yang berupa *link google form* yang akan diisi oleh responden yang terdiri dari 50 pernyataan sesuai dengan yang dirasakan oleh pengguna *website* e-payment universitas dinamika bangsa. Sebanyak 113 responden yang telah memberikan respon pada kuesioner yang telah disebarkan.

Perhitungan dari presentasi kuisioner ini dengan cara sebagai berikut:

Rumus Dimana:

$$p = \frac{f}{n} \times 100$$

p = Presentasi

f = Frekuensi dari setiap jawaban angket

*n* = Jumlah responden keseluruhan

Adapun profil 113 responden yang telah berpartisipasi dalam pengisian kuisioner dalam penelitian ini adalah sebagai berikut :

**Tabel 5.1 Statistik Deskripsi Responden** 

| Uraian                   | Frekuensi | Presentase |
|--------------------------|-----------|------------|
| Jenis Kelamin:           |           |            |
| Laki-Laki                | 60        | 53%        |
| Perempuan                | 53        | 46,9%      |
| Total                    | 113       | 100%       |
| Prodi :                  |           |            |
| Sistem Informasi         | 66        | 58,4%      |
| Teknik Informatika       | 31        | 27,4%      |
| Sistem Komputer          | 13        | 11,5%      |
| Manajemen Informatika    | 0         | 0%         |
| Komputerisasi Akuntansi  | 3         | 2,6%       |
| Manajemen                | 0         | 0%         |
| Kewirausahaan            | 0         | 0%         |
|                          | 0         | 0%         |
| Total                    | 113       | 100%       |
| Semester :               |           |            |
| Semester 1-2             | 0         | 0%         |
| Semester 3-4             | 2         | 1,7%       |
| Semester 5-6             | 11        | 9,7%       |
| Semester >6              | 100       | 88%        |
| Total                    | 113       | 100%       |
| Sering menggunakan laman |           |            |
| siakad :                 | 400       | 0000       |
| Ya                       | 100       | 88%        |
| Tidak                    | 13        | 11%        |
| Total                    | 113       | 100%       |

### 5.2 FREKUENSI JAWABAN VARIABEL

## 5.2.1 Frekuensi Jawaban Variabel *Effeciency*

Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden dalam penelitian tentang Variable *Effeciency* yang digunakan untuk mengukur pengguna dalam mendapatkan informasi yang diberikan oleh website e-pay unama. Maka frekuensi dari jawaban Variable *Effeciency* responden dapat dilihat Tabel 5.2

Tabel 5.2 Frekuensi Jawaban Variabel *Effeciency* 

|           |           | Skala Pengukuran    |            |       |      |       |                     |       |                               |      |
|-----------|-----------|---------------------|------------|-------|------|-------|---------------------|-------|-------------------------------|------|
| Indikator | (Sa<br>Se | 5<br>ungat<br>tuju) | 4 (Setuju) |       |      |       | 2<br>(Tidak Setuju) |       | 1<br>(Sangat Tidak<br>Setuju) |      |
|           | Frek      | %                   | Frek       | %     | Frek | %     | Frek                | %     | Frek                          | %    |
| EFF1      | 16        | 14,1%               | 56         | 49,5% | 33   | 29,2% | 2                   | 1,7%  | 5                             | 4,4% |
| EFF2      | 11        | 9,7%                | 18         | 15,9% | 35   | 30,9% | 39                  | 34,4% | 10                            | 8,8% |
| EFF3      | 26        | 23%                 | 48         | 42,4% | 27   | 23,8% | 7                   | 6,1%  | 5                             | 4,4% |

Berdasarkan tabel diatas, indikator EFF1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran netral dengan persentase nilai sebesar 49,5%, pada indikator EFF2 skala pengukuran terbesar yaitu tidak setuju dengan persentase 34,5%, kemudian EFF3 skala pengukuran terbesar yaitu netral dengan persentase 42,4%.

## 5.2.2 Frekuensi Jawaban Variabel Affect

Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden dalam penelitian tentang Variable *Affect* yang digunakan untuk mengukur kenyamanan pengguna saat digunakan website e-pay unama. Maka frekuensi dari jawaban Variable *Affect* responden dapat dilihat Tabel 5.3

Tabel 5.3 Frekuensi Jawaban Variabel Affect

|           |      | Skala Pengukuran |          |       |      |        |                   |       |                  |      |   |  |     |            |
|-----------|------|------------------|----------|-------|------|--------|-------------------|-------|------------------|------|---|--|-----|------------|
|           |      | 5                |          | 5     |      | 5      |                   | 4     | 3                |      | 2 |  | (S: | 1<br>angat |
| Indikator |      | angat<br>etuju)  | (Setuju) |       | (N   | etral) | (Tidak<br>Setuju) |       | Tidak<br>Setuju) |      |   |  |     |            |
|           | Frek | %                | Frek     | %     | Frek | %      | Frek              | %     | Frek             | %    |   |  |     |            |
| AFF1      | 16   | 14,1%            | 23       | 20,3% | 44   | 38,9%  | 21                | 18,5% | 9                | 7,9% |   |  |     |            |
| AFF2      | 38   | 33,6%            | 45       | 39,8% | 22   | 19,4%  | 5                 | 4,4%  | 3                | 2,6% |   |  |     |            |
| AFF3      | 15   | 13,2%            | 41       | 36,2% | 38   | 33,6%  | 16                | 14,1% | 3                | 2,6% |   |  |     |            |

Berdasarkan tabel diatas, indikator AFF1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran netral dengan persentase sebesar 38,9%, pada indikator AFF2 skala pengukuran terbesar yaitu setuju dengan persentase 39,8% dan pada AFF3 skala pengukuran terbesar yaitu setuju dengan nilai persentase 36,2%.

# 5.2.3 Frekuensi Jawaban Variabel Helpfullness

Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden dalam penelitian tentang Variable *Helpfullness* yang digunakan untuk mengukur

pengguna dalam menyelesaikan masalah dengan membaca informasi yang diberikan oleh *website* e-pay unama. Maka frekuensi dari jawaban Variable *Helpfullness* responden dapat dilihat Tabel 5.4

Tabel 5.4 Frekuensi Jawaban Variabel Helpfullness

|           |      | Skala Pengukuran |      |          |      |          |      |                |      |                          |  |
|-----------|------|------------------|------|----------|------|----------|------|----------------|------|--------------------------|--|
|           |      | 5                | 4    | 4        | 3    |          | 2    |                | 1    |                          |  |
| Indikator | ,    | angat<br>tuju)   | (Set | (Setuju) |      | (Netral) |      | (Tidak Setuju) |      | (Sangat Tidak<br>Setuju) |  |
|           | Frek | %                | Frek | %        | Frek | %        | Frek | %              | Frek | %                        |  |
| HFN1      | 12   | 10,6%            | 16   | 14,1%    | 42   | 37,1%    | 31   | 27,4%          | 12   | 10,6%                    |  |
| HFN2      | 15   | 13,2%            | 20   | 17,6%    | 43   | 38%      | 31   | 27,4%          | 4    | 3,5%                     |  |
| HFN3      | 21   | 18,5%            | 42   | 37,1%    | 41   | 36,2%    | 8    | 7%             | 1    | 0,8%                     |  |
| HFN4      | 10   | 8,8%             | 24   | 21,2%    | 50   | 44,2%    | 21   | 18,5%          | 8    | 7%                       |  |

Berdasarkan tabel diatas, indikator HFN1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran netral dengan persentase nilai sebesar 37,1%, pada indikator HFN2 skala pengukuran terbesar yaitu netral dengan persentase 38%, kemudian HFN3 skala pengukuran terbesar yaitu setuju dengan persentase 37,1% dan pada HFN4 skala pengukuran terbesar yaitu netral dengan persentase 44,2%.

#### 5.2.4 Frekuensi Jawaban Variabel *Control*

Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden

dalam penelitian tentang Variable *Control* yang digunakan untuk mengukur pengguna dalam menjelajah dan menguasai website e-pay unama. Maka frekuensi dari jawaban Variable *Control* responden dapat dilihat Tabel 5.5

Tabel 5.5 Frekuensi Jawaban Variabel Control

|           |      | Tabels           |      | idelibi u | ana  | un vui          | uber et | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |      |
|-----------|------|------------------|------|-----------|------|-----------------|---------|-----------------------------------------|-----------------|------|
|           |      | Skala Pengukuran |      |           |      |                 |         |                                         |                 |      |
|           |      | 5                | 4    | 4         | 3    |                 | 2       |                                         | 1               |      |
| Indikator | Se   | angat<br>tuju)   | (Set | (Setuju)  |      | (Netral) (Tidak |         | Setuju)                                 | (Sangat<br>Sett |      |
| markator  | Frek | %                | Frek | %         | Frek | %               | Frek    | %                                       | Frek            | %    |
| CNL1      | 24   | 21,2%            | 48   | 42,4%     | 31   | 27,4%           | 7       | 6,1%                                    | 3               | 2,6% |
| CNL2      | 8    | 7%               | 18   | 15,9%     | 39   | 34,5%           | 38      | 33,6%                                   | 10              | 8,8% |
| CNL3      | 13   | 11,5%            | 16   | 14,1%     | 36   | 31,8%           | 37      | 32,7%                                   | 11              | 9,7% |

Berdasarkan tabel diatas, indikator CNL1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran sangat setuju dengan persentase nilai sebesar 42,4%, pada indikator CNL2 skala pengukuran terbesar yaitu sangat netral dan tidak setuju dengan persentase samasama 34,5% dan pada CNL3 skala pengukuran terbesar yaitu tidak setuju dengan nilai persentase 32,7%.

### 5.2.5 Frekuensi Jawaban Variabel *Learnbility*

Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden dalam penelitian tentang Variable *Learnbility* yang digunakan untuk mengukur kemampuan dan pemahaman penggunadalam mempelajari *website* e-pay unama.

Maka frekuensi dari jawaban Variable *Learnbility* responden dapat dilihat Tabel 5.6

Tabel 5.6 Frekuensi Jawaban Variabel Learnbility

|           |      | Skala Pengukuran |          |       |          |       |                   |      |                          |       |
|-----------|------|------------------|----------|-------|----------|-------|-------------------|------|--------------------------|-------|
|           |      | 5                |          | 4     |          | 3     |                   | 2    | 1                        |       |
| T 171     | Se   | angat<br>tuju)   | (Setuju) |       | (Netral) |       | (Tidak<br>Setuju) |      | (Sangat Tidak<br>Setuju) |       |
| Indikator | Frek | %                | Frek     | %     | Frek     | %     | Frek              | %    | Frek                     | %     |
| LNB1      | 28   | 24,7%            | 48       | 42,4% | 32       | 28,3% | 2                 | 1,7% | 3                        | 2,6%  |
| LNB2      | 20   | 17,6%            | 48       | 42,4% | 26       | 23%   | 3                 | 2,6% | 16                       | 14,1% |
| LNB3      | 14   | 12,3%            | 53       | 46,9% | 36       | 31,8% | 7                 | 6,1% | 3                        | 2,6%  |

Berdasarkan tabel diatas, indikator LNB1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran sangat setuju dengan persentase nilai sebesar 42,4%, pada indikator LNB2 skala pengukuran terbesar yaitu setuju dengan persentase 42,4% dan pada LNB3 skala pengukuran terbesar yaitu setuju dengan nilai persentase 46,9%.

# 5.2.6 Frekuensi Jawaban Variabel *Usability*

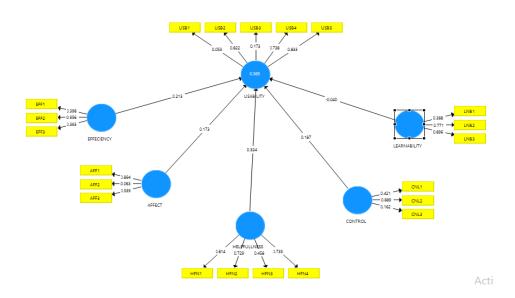
Berdasarkan dari hasil penyebaran kuisioner terhadap 113 responden dalam penelitian tentang Variable *Usability* yang digunakan untuk mengukur kualitas dari website e-pay unama dan mengetahui tanggapan pengguna terhadap website tersebut. Maka frekuensi dari jawaban Variable *Usability* responden dapat dilihat Tabel 5.7

Tabel 5.7 Frekuensi Jawaban Variabel *Usability* 

|           |      | Skala Pengukuran |      |       |      |        |        |         |      |                   |
|-----------|------|------------------|------|-------|------|--------|--------|---------|------|-------------------|
|           |      | 5                | 4    | 4     |      | 3      | 2      |         | 1    |                   |
| Indikator | Se   | angat<br>tuju)   | (Set | tuju) | (Ne  | etral) | (Tidak | Setuju) | _    | at Tidak<br>tuju) |
|           | Frek | %                | Frek | %     | Frek | %      | Frek   | %       | Frek | %                 |
| USB1      | 67   | 59,2%            | 34   | 30%   | 7    | 6,1%   | 3      | 2,6%    | 2    | 1,7%              |
| USB2      | 12   | 10,6%            | 16   | 14,1% | 43   | 38%    | 37     | 32,7%   | 6    | 5,3%              |
| USB3      | 25   | 22,1%            | 56   | 49,5% | 28   | 24,7%  | 1      | 0,8%    | 3    | 2,6%              |
| USB4      | 10   | 8,8%             | 17   | 15%   | 50   | 44,2%  | 30     | 26,5%   | 5    | 4,4%              |
| USB5      | 11   | 9,7%             | 25   | 22,1% | 46   | 40,7%  | 24     | 21,2%   | 7    | 6,1%              |

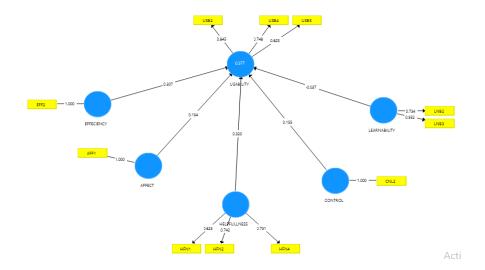
Berdasarkan tabel dintas indikator USB1 memiliki frekuensi jawaban kuesioner dengan jumlah terbesar yaitu terdapat pada kolom skala pengukuran sangat setuju dengan persentase nilai sebesar 59,2% pada indikator USB2 skala pengukuran terbesar yaitu netral dengan persentase 38% pada USB skala pengukuran terbesar yaitu setuju dengan persentase 49,5%, kemudian USB4 skala pengukuran terbesar yaitu netral dengan nilai persentase 44,2%, dan USB5 skala pengukuran terbesar yaitu netral dan netraldengan nilai persentase sama-sama 40,7%.

## 5.3 HASIL PENGOLAHAN DATA


### 5.3.1 Pengujian Model Pengukuran (*Outer Model*)

Pengujian model pengukuran (*Outer Model*) yaitu menghubungkan semua variabel manifest atau indikator dengan variabel latennya. Berikut Langkah

pengujian model pengukuran dengan menggunakan partial least square (PLS):


## 5.3.1.1 Uji Validitas Konvergen (*Convergent Validity*)

Convergent validity ini memiliki tujuan untuk mengetehaui validitas setiap hubungan antara indicator dengan konstruk atau variabel latennya. Maka dari itu penelitian ini akan menggunakan batas loading factor sebesar 0.60



Gambar 5.1 Model PLS 1

Hasil pengolahan dengan menggunakan smartPLS dapat dilihat pada gambar 5.1. Nilai *outer model* atau korelasi antara kontruk dengan variabel pada awalnya belum memenuhi *convergent validity* karena masih ada indicator yang memiliki nilai *loading factor* dibawah 0.60.



Gambar 5.2 model PLS 2

Gambar diatas merupakan nilai loading untuk outer model pada uji validasi konvergen terhadap beberapa indikator yang memenuhi >0.60.

Tabel 5.8 Nilai *loading* untuk semua konstruk

| No | Indikator | Nilai <i>Loading</i> | Keterangan                   |
|----|-----------|----------------------|------------------------------|
| 1  | EFF2      | 1.000                | Memenuhi convergent validity |
| 2  | AFF1      | 1.000                | Memenuhi convergent validity |
| 3  | HFN1      | 0.823                | Memenuhi convergent validity |
| 4  | HFN2      | 0.742                | Memenuhi convergent validity |
| 5  | HFN4      | 0.731                | Memenuhi convergent validity |
| 6. | CNL2      | 1.000                | Memenuhi convergent validity |
| 7  | LNB2      | 0.734                | Memenuhi convergent validity |
| 8  | LNB3      | 0.932                | Memenuhi convergent validity |
| 9  | USB2      | 0.845                | Memenuhi convergent validity |
| 10 | USB4      | 0.748                | Memenuhi convergent validity |
| 11 | USB5      | 0.825                | Memenuhi convergent validity |

Diketahui bahwa tidak semua indikator memiliki nilai *loading* yang memenuhi *convergent validity* yaitu >0.60 sehingga dilakukan pengujian ulang dan

mendapatkan beberapa indikator yang memiliki nilai *loading* yang bisa memenuhi convergent validity.

**Tabel 5.9 Outer Loadings** 

|      | Affect | Control | Effeciency | Helpfulness | Learnability | Usability |
|------|--------|---------|------------|-------------|--------------|-----------|
|      | (AFF)  | (CNL)   | (EFF)      | (HFN)       | (LNB)        | (USB)     |
| AFF1 | 1.000  |         |            |             |              |           |
| CNL2 |        | 1.000   |            |             |              |           |
| EFF2 |        |         | 1.000      |             |              |           |
| HFN1 |        |         |            | 0.823       |              |           |
| HFN2 |        |         |            | 0.742       |              |           |
| HFN4 |        |         |            | 0.731       |              |           |
| LNB2 |        |         |            |             | 0.734        |           |
| LNB3 |        |         |            |             | 0.932        |           |
| USB2 |        |         |            |             |              | 0.845     |
| USB4 | _      |         |            |             |              | 0.748     |
| USB5 |        |         |            |             |              | 0.825     |

Modifikasi model dilakukan dengan cara mengeluarkan indikator-indikator yang memiliki nilai *loading factor* dibawah 0.60. Model modifikasi pada gambar 5.2 dan tabel 5.9 menunjukan bahwa semua *loading factor* memiliki nilai diatas 0.60 sehingga, kontruk untuk semua variabel sudah tidak ada yang di eliminasi. Dapat disimpulkan bahwa kontruk telah memenuhi kriteria *convergent validity*.

### 5.3.1.2 Uji Validitas Diskriminan (*Discriminant Validity*)

Discriminant Validity dilakukan untuk memastikan bahwa setiap konsep dari masing-masing model laten berbeda dengan variabel lainnya. Table dibawah

ini menunjukan hasil validitas diskriminan dari model penelitian dengan melihat nilai *cross loading*.

**Tabel 5.10 Cross Loading** 

|      | Affect | Control | Efficiency | Helpfullness | Learnability | Usability |
|------|--------|---------|------------|--------------|--------------|-----------|
|      | (AFF)  | (CNL)   | (EFF)      | (HFN)        | (LNB)        | (USB)     |
| AFF1 | 1.000  | 0.469   | 0.635      | 0.661        | 0.108        | 0.609     |
| CNL2 | 0469   | 1.000   | 0.372      | 0.476        | 0.006        | 0.489     |
| EFF2 | 0.635  | 0.372   | 1.000      | 0.735        | 0.429        | 0.669     |
| HFN1 | 0.546  | 0.453   | 0.692      | 0.823        | 0.272        | 0.591     |
| HFN2 | 0.482  | 0.378   | 0.576      | 0.742        | 0.301        | 0.542     |
| HNF4 | 0.490  | 0.024   | 0.388      | 0.731        | 0.197        | 0.455     |
| LNB2 | 0.160  | 0.024   | 0.354      | 0.306        | 0.734        | 0.120     |
| LNB3 | 0.057  | -0.005  | 0.378      | 0.285        | 0.932        | 0.255     |
| USB2 | 0.518  | 0.441   | 0.578      | 0.616        | 0.145        | 0.845     |
| USB4 | 0.520  | 0.297   | 0.465      | 0.507        | 0.070        | 0.748     |
| USB5 | 0.442  | 0.424   | 0.571      | 0.556        | 0.305        | 0.825     |

Dari hasil estimasi *cross loading* pada table 5.10 menunjukan bahwa nilai *loading* dari masing-masing item indikator terhadap konstruknya dari nilai *cross loading*. Dengan itu dapat disimpulkan bahwa semua konstruk atau variabel laten sudah memiliki *deskriminant validity* lebih baik dari pada indicator di blok lainnya.

### 5.3.1.3 Uji AVE (Average variance Extracted)

Untuk mengevaluasi validitas deskriminan dapat dilihat dengan metode AVE (*Average variance Extracted*) untuk setiap konstruk atau variabel laten. Model memiliki validitas deskriminan yang lebih baik apabila akar kuadrat AVE (*Average variance Extracted*) untuk masing-masing konstruk lebih besar dari

korelasi antara dua konstruk didalam model.

Table 5.11 AVE (Average variance Extracted)

| Variabel           | AVE (Average variance Extracted) |
|--------------------|----------------------------------|
| Affect (AFF)       | 1.000                            |
| Control (CNL)      | 1.000                            |
| Efficiency (EFF)   | 1.000                            |
| Helpfullness (HFN) | 0.588                            |
| Learnability (LNB) | 0.704                            |
| Usability (USB)    | 0.652                            |

Berdasarkan tabel 5.11 di atas menunjukkan bahwa nilai AVE (*Average variance Extracted*) untuk semua konstruk memiliki nilai >0.50. Oleh karena itu tidak ada permasalahan convergent validity pada model yang diuji dan diketahui bahwa semua konstruk memenuhi kriteria validitas diskriminan.

### 5.3.1.4 Uji Composite Reliability dan Uji Cronbach Alpha

Composite Reliability mengukur nilai reliability sesungguhnya dari suatu variabel sedangkan Cronbach Alpha mengukur niali terendah (lowderbound) reliability suatu variabel sehingga nilai Composite Reliability >0.60 dan nilai reliabilitas suatu variabel sehingga nilai Composite Reliability >0.60 dan nilai Cronbach Alpha >0.60.

**Tabel 5.12 Nilai Composite Reliability** 

| Variabel     | Composite Reliability |  |  |  |
|--------------|-----------------------|--|--|--|
| Affect (AFF) | 1.000                 |  |  |  |

| Control (CNL)      | 1.000 |
|--------------------|-------|
| Efficiency (EFF)   | 1.000 |
| Helpfullness (HFN) | 0.810 |
| Learnability (LNB) | 0.824 |
| Usability (USB)    | 0.848 |

Tabel 5.12 menunjukan nilai Composite Reliability untuk semua konstruk berada diatas nilai >0.60. Dengan demikian dapat disimpulkan bahwa semua konstruk memiliki reliability yang baik.

Tabel 5.13 Nilai Cronbach Alpha

| Variabel           | Cronbach Alpha |
|--------------------|----------------|
| Affect (AFF)       | 1.000          |
| Control (CNL)      | 1.000          |
| Efficiency (EFF)   | 1.000          |
| Helpfullness (HFN) | 0.650          |
| Learnability (LNB) | 0.609          |
| Usability (USB)    | 0.732          |

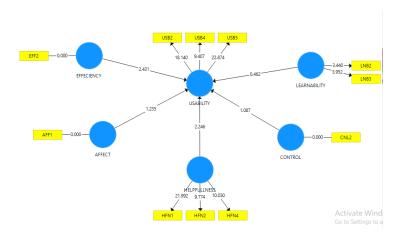
Dengan melihat nilai Cronbach Alpha dari block indikator yang mengukur konstruk. Konstruk dinyatakan reliability jika nilai Cronbach Alpha lebih besar dari 0.60. Dengan demikian dapat disimpulkan dari tabel 5.13 bahwa konstruk *Control* memiliki reabilitas yang belum sesuai batas nilai minimum yang disyaratkan. Sedangkan yang lainnya dinyatakan reliabel karena lebih besar dari 0.60.

#### **5.3.2** Pengujian Model Struktural (*Inner Model*)

Perancangan model structural (*inner model*) berhubungan antar variabel laten pada PLS didasarkan pada rumusan masalah atau hipotesis penelitian.

#### a. Nilai R-square

Nilai R-square (R2) digunakan untuk menilai seberapa besar pengaruh variabel laten independent tertentu terhadap variabel laten dependen.


Tabel 5.14 Nilai R-square

| Variabel        | Nilai <i>R-square</i> |
|-----------------|-----------------------|
| Usability (USB) | 0.577                 |

Tabel diatas memeberikan nilai 0.577 untuk konstruk usability (USB) yang berarti bahwa *Efficiency, affect, helpfulness, control, learnability* mampu menjelaskan varians *usability* (USB) sebesar 57,7% sedangkan sisahnya dipengaruhi oleh factor-faktor lain.

### b. Hasil Boststrapping

Dalam PLS, pengujian setiap hubungan dilakukan dengan menggunakan simulasi dengan metode *Bootstrapping* terhadap sampel. Pengujian ini bertujuan untuk meminimalkan masalah ketidak normalan data penelitian. Hasil pengujian dengan metode *Bootstrapping* dari analisis PLS sebagai berikut:



**Gambar 5.3 Bootstrapping** 

Untuk memenuhi signifikasi model prediksi dalam pengujian model struktual, dapat dilihat dari nilai t-statistik antara variabel *independent* ke variabel *dependen* dalam tabel pengaruh langsung (path coefficient) pada output smartPLS dibawah ini:

**Tabel 5.15 Pengaruh Langsung** 

|            | G 1                | Sampel | Standar | T-statistik |          |
|------------|--------------------|--------|---------|-------------|----------|
|            | Sampel<br>asli (O) | mean   | deviasi | ( O/STDE    | P values |
|            |                    | (M)    | (STDEV) | V )         | r values |
| AFF -> USB | 0.134              | 0.149  | 0.108   | 1.235       | 0.217    |
| CNL ->USB  | 0.155              | 0.151  | 0.143   | 1.087       | 0.278    |
| EFF -> USB | 0.307              | 0.284  | 0.126   | 2.431       | 0.015    |
| HFN ->USB  | 0.320              | 0.329  | 0.123   | 2.246       | 0.025    |
| LNB ->USB  | -0.037             | -0.016 | 0.081   | 0.462       | 0.644    |

Dari tabel diatas dapat diketahui bahwa bootstrapping adalah resampling untuk menentukan nilai T sehingga dapat diketahui tingkat signifikan dari nilai T

tersebut. Dari data diatas didapatkan nilai P values yang memenuhi untuk dilakukan uji hipotesis < 0.05 adalah indikator AFF dan HFN.

Tabel 5.16 Hasil Uji Hipotesis

| Hipotesis                               | Konstruk                             | Keputusan              |  |
|-----------------------------------------|--------------------------------------|------------------------|--|
| Affect berpengaruh positif terhadap     |                                      | Hipotesis 1 di tolak   |  |
|                                         | usability                            |                        |  |
| 2                                       | Control berpengaruh positif terhadap | Hinatasis 2 di ditalak |  |
| usability                               |                                      | Hipotesis 2 di ditolak |  |
| Efficiency berpengaruh positif terhadap |                                      | Uinotosis 2 di torima  |  |
| 3                                       | usability                            | Hipotesis 3 di terima  |  |
| 4                                       | Helpfullness berpengaruh positif     | Himatasis A di tanima  |  |
| 4                                       | terhadap <i>usability</i>            | Hipotesis 4 di terima  |  |
| 5                                       | Learnability berpengaruh positif     | Himotosia 5 di talak   |  |
| 5                                       | terhadap <i>usability</i>            | Hipotesis 5 di tolak   |  |

Dari tabel 5.16 diatas yang memenuhi nilai P values < 0.05 yang dapat di terima adalah indikator Effeciency dengan P values 0.015 dan Helpfullness dengan P values 0.025 sehingga hipotesis 3 dan 4 diterima.

### 5.2 HASIL ANALISIS

### 5.2.1 Pembahasan Hipotesis 1

Hasil pengujian variabel *affect* pada tabel 5.15 tidak signifikasi terhadap variabel *usability* dengan nilai *P value* 0.217 > 0.05 dan menunjukkan hasil perhitungan t-statistik *affect* terhadap *usability* (1.235) > t-tabel (1.96). Dengan demikian, hipotesis 1 dalam penelitian ini **ditolak**.

Berdasarkan hasil pengujian hipotesis pada website e-payment universitas

dinamika bangsa, pengguna merasa *website* ini belum memberi kenyamanan saat pengguna mengakses *website*, serta tingkat kepuasan pengguna pun sangat minim sehingga terlalu lama pengguna untuk mempelajari website ini.

#### 5.2.2 Pembahasan Hipotesis 2

Hasil pengujian variabel *control* pada tabel 5.15 tidak signifikasi terhadap variabel *usability* dengan nilai P *value* 0.278 > 0.05 dan menunjukkan hasil perhitungan t-statistik *control* terhadap *usability* (1.087) > t-tabel (1.96). Dengan demikian, hipotesis 2 dalam penelitian ini **ditolak**.

Berdasarkan hasil pengujian hipotesis pada *website* e-payment universitas dinamika bangsa, pengguna merasa *website* tidak responsif terhadap perlakuan pengguna dan tidak konsisten.

#### 5.2.3 Pembahasan Hipotesis 3

Hasil pengujian variabel *Efficiency* pada tabel 5.15 signifikasi terhadap variabel *usability* dengan nilai *P value* 0.015 < 0.05 dan menunjukkan hasil perhitungan t- statistik *Efficiency* terhadap *usability* (2.431) > t-tabel (1.96). dengan demikian, hipotesis 3 dalam penelitian ini **diterima**.

Berdasarkan hasil pengujian hipotesis pada website e-payment universitas dinamika bangsa, pengguna merasa website ini sudah efficiency. Kecepatan dan kelancaran menemukan informasi sudah cepat dengan layanan yang diberikan website yang sangat berguna.

#### 5.2.4 Pembahasan Hipotesis 4

Hasil pengujian variabel *Helpfullness* pada tabel 5.15 signifikasi terhadap variabel *usability* dengan nilai *P value* 0.025 < 0.05 dan menunjukkan hasil perhitungan t- statistik *Helpfullness* terhadap *usability* (2.246) > t-tabel (1.96). dengan demikian, hipotesis 4 dalam penelitian ini **diterima**.

Berdasarkan hasil pengujian hipotesis pada *website* e-payment universitas dinamika bangsa, pengguna merasa senang dengan tampilan fitur yang ada pada *website*.

#### 5.2.5 Pembahasan Hipotesis 5

Hasil pengujian variabel *Learnability* pada tabel 5.15 tidak signifikasi terhadap variabel *usability* dengan nilai *P value* 0.644 > 0.05 dan menunjukkan hasil perhitungan t- statistik *Learnability* terhadap *usability* (0.462) < t-tabel (1.96). dengan demikian, hipotesis 2 dalam penelitian ini **ditolak**.

Berdasarkan hasil pengujian hipotesis pada *website* universitas dinamika bangsa, pengguna merasa *website* e-payment tidak menghasilkan keefesiensian waktu karena petunjuk pengarahan *website* ini tidak membantu dan respon *website* sangat lambat.

#### 5.3 REKOMENDASI

Berdasarkan hasil penelitian mengenai evaluasi *usability* pada *website* epayment universitas dinamika bangsa, ditemukan beberapa aspek yang perlu
diperbaiki untuk meningkatkan kualitas terutama pada aspek *usability*. Berikut ini
adalah beberapa usulan rekomendasi berdasarkan indikator *usability*:

#### 5.3.1 Rekomendasi Berdasarkan Variabel Affect

Website ini tampilannya perlu dibuat lebih menarik lagi tetapi dengan konsep yang simple dan mudah dipahami agar pengguna tidak merasa kebingungan saat menggunaknnya dan layanan yang diberikan harus lebih diperhatikan lagi karena itu membuat pengguna merasa tidak nyaman dan merasa kurang puas.

#### 5.3.2 Rekomendasi Berdasarkan Variabel Control

Pada *website* e-payment universitas dinamika bangsa, pengguna merasa *website* tersebut tidak responsif terhadap perlakuan pengguna sehingga perlu dipertimbangkan untuk meningkatkan kualitas dari *website* tersebut karena membuat pengguna merasa sedikit terganggu dan tidak nyaman saat menggunakannya.

### 5.3.3 Rekomendasi Berdasarkan Variabel Learnability

Website ini ketersediaan petunjuk penggunaannya harus lebih dilengkapi lagi sehingga pengguna tidak merasa bingung pada saat menggunakannya dan pengguna juga merasa mudah untuk mempelajari website tersebut.