BAB V

HASIL ANALISIS DAN VISUALISASI

5.1 PRAPROSES DATA

Tahapan ini melakukan beberapa persiapan proses data. Persiapan proses data tersebut yaitu :

1. Data Mahasiswa Sistem Informasi

Data mentah ini merupakan semua data mahasiswa STIKOM Dinamika Bangsa Jambi jurusan SI sebelum dilakukannya penyeleksian data. Adapun data tersebut dapat dilihat pada tabel 5.1 :

#	NIM	Nama	Status Kuliah	Mata Kuliah	SKS	Kontrak	NAS	Grade	Kredit	Periode
1	8040130001	Dewi Tursina	Lulus	Bahasa Inggris I	2	в	66	C+	5	2013
2	8040130001	Dewi Tursina	Lulus	Pengantar Manajemen	2	в	78	B+	7	2013
3	8040130001	Dewi Tursina	Lulus	Kalkulus	2	в	82	A	8	2013
4	8040130001	Dewi Tursina	Lulus	Pendidikan Agama	2	в	82	А	8	2013
5	8040130001	Dewi Tursina	Lulus	Pendidikan Pancasila	2	в	80	А	8	2013
6	8040130001	Dewi Tursina	Lulus	Pengantar Teknologi Informasi	3	в	71	в	9	2013
7	8040130001	Dewi Tursina	Lulus	Lab. Pengantar Tek. Informasi	1	в	80	А	4	2013
8	8040130001	Dewi Tursina	Lulus	Algoritma dan Pemrograman	3	в	70	в	9	2013
9	8040130001	Dewi Tursina	Lulus	Bahasa Indonesia	2	в	82	A	8	2013
10	8040130001	Dewi Tursina	Lulus	Lab. Algoritma dan Pemrograman	1	в	65	C+	2,5	2013
11	8040130001	Dewi Tursina	Lulus	Logika Matematika	2	в	62	С	4	2013
12	8040130001	Dewi Tursina	Lulus	Kecakapan Antar Personal	2	в	60	С	4	2013
13	8040130001	Dewi Tursina	Lulus	Etika Profesi	2	в	76	B+	7	2013
14	8040130001	Dewi Tursina	Lulus	Matematika Diskrit	2	в	70	в	6	2013
15	8040130001	Dewi Tursina	Lulus	Organisasi Komputer	2	в	68	C+	5	2013
16	8040130001	Dewi Tursina	Lulus	Sistem Operasi	2	в	55	D+	3	2013
17	8040130001	Dewi Tursina	Lulus	Pengantar Akuntansi	2	в	60	с	4	2013
18	8040130001	Dewi Tursina	Lulus	Sistem Digital	2	в	65	C+	5	2013
19	8040130001	Dewi Tursina	Lulus	Sistem Informasi	3	в	81	А	12	2013
20	8040130001	Dewi Tursina	Lulus	Struktur Data	2	в	70	в	6	2013
21	8040130001	Dewi Tursina	Lulus	Lab. Struktur Data	1	в	71	в	3	2013
22	8040130001	Dewi Tursina	Lulus	Pengetahuan Bisnis	2	в	80	А	8	2013
23	8040130001	Dewi Tursina	Lulus	Pendidikan Kewarganegaraan	2	в	74	в	6	2013
24	8040130001	Dewi Tursina	Lulus	Bahasa Inggris II	2	в	72	в	6	2013
25	8040130001	Dewi Tursina	Lulus	Lab. Pemrograman Berorientasi Objek I	1	в	60	С	2	2014

Tabel 5.1 Data Mahasiswa Sistem Informasi

2. Seleksi Data Mahasiswa Sistem Informasi

Seleksi data mahasiswa sistem informasi ini merupakan proses penyeleksian data dengan memfokuskan pada atribut-atribut yang digunakan untuk perhitungan seperti jenis kelamin, sekolah asal, jurusan sekolah asal, status kuliah, kriteria nilai, ipk dan kelas lulus. Adapun data tersebut dapat dilihat pada Tabel 5.2.

jenkel	sekolahasal	jurusan	statuskuliah	kriterianilai	ipk	kelaslulus
Р	SMA	IPS	Lulus	Sangat Baik	Sedang	CEPAT
L	SMA	IPS	Lulus	Sangat Baik	Rendah	LAMBAT
Р	SMA	IPS	Lulus	Sangat Baik	Sedang	TEPAT
Р	SMK	Komputer	Lulus	Sangat Baik	Sedang	TEPAT
Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi	CEPAT
L	SMK	Komputer	Lulus	Sangat Baik	Sedang	TEPAT
Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMK	Ekonomi	Lulus	Sangat Baik	Sedang	CEPAT
Р	SMK	Perkantoran	Lulus	Sangat Baik	Sedang	CEPAT
L	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi	CEPAT
L	SMK	IPS	Lulus	Sangat Baik	Tinggi	CEPAT
L	SMK	Ekonomi	Lulus	Sangat Baik	Sedang	CEPAT
Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMK	Komputer	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMK	Komputer	Lulus	Sangat Baik	Sedang	TEPAT
L	SMA	IPS	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMA	IPS	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMA	IPS	Lulus	Sangat Baik	Tinggi	CEPAT
Р	SMA	IPS	Lulus	Sangat Baik	Sedang	CEPAT
L	SMK	Komputer	Lulus	Baik	Sedang	TEPAT
L	SMA	IPA	Lulus	Sangat Baik	Sedang	CEPAT
L	SMA	IPS	Lulus	Sangat Baik	Tinggi	CEPAT
P	SMA	IPS	Lulus	Sangat Baik	Tinggi	TEPAT
L	SMK	Komputer	Lulus	Sangat Baik	Sedang	TEPAT
L	SMA	IPS	Lulus	Cukup	Sedang	LAMBAT

Tabel 5.2 Seleksi Data Mahasiswa Sistem Informasi

3. Konversi Hasil Data

Data yang di di excel kemudian dipindahkan ke notepad kemudian di simpan dengan format .csv. ini dilakukan agar data dapat dimasukan kedalam *tools weka*, adapun bentuk data tersebut dapat dilihat pada gambar 5.1

```
jenkel, sekolahasal, jurusan, statuskuliah, kriterianilai, ipk, kelaslulus,
P ,SMA,IPS,Lulus ,Sangat Baik,Sedang,CEPAT,
L ,SMA, IPS, Lulus , Sangat Baik, Rendah, LAMBAT,
P ,SMA, IPS, Lulus , Sangat Baik, Sedang, TEPAT,
P ,SMK,Komputer,Lulus ,Sangat Baik,Sedang,TEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
L ,SMK,Komputer,Lulus ,Sangat Baik,Sedang,TEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Sedang,CEPAT,
P ,SMK,Perkantoran,Lulus ,Sangat Baik,Sedang,CEPAT,
L ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
L ,SMK,IPS,Lulus ,Sangat Baik,Tinggi,CEPAT,
L ,SMK,Ekonomi,Lulus ,Sangat Baik,Sedang,CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMK,Komputer,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMK,Komputer,Lulus ,Sangat Baik,Sedang,TEPAT,
L ,SMA, IPS, Lulus , Sangat Baik, Tinggi, CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMA,IPS,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMA, IPS, Lulus , Sangat Baik, Tinggi, CEPAT,
P ,SMA, IPS, Lulus , Sangat Baik, Sedang, CEPAT,
L ,SMK,Komputer,Lulus ,Baik,Sedang,TEPAT,
L ,SMA,IPA,Lulus ,Sangat Baik,Sedang,CEPAT,
L ,SMA, IPS, Lulus , Sangat Baik, Tinggi, CEPAT,
P ,SMA,IPS,Lulus ,Sangat Baik,Tinggi,TEPAT,
L ,SMK,Komputer,Lulus ,Sangat Baik,Sedang,TEPAT,
L ,SMA, IPS, Lulus , Cukup, Sedang, LAMBAT,
L ,SMA, IPS, Lulus , Sangat Baik, Rendah, CEPAT,
P ,SMA,IPS,Lulus ,Sangat Baik,Tinggi,CEPAT,
L ,SMK,Komputer,Lulus ,Baik,Sedang,CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Sedang,CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Sedang,CEPAT,
P ,SMK,Ekonomi,Lulus ,Sangat Baik,Tinggi,CEPAT,
P ,SMA,IPA,Lulus ,Sangat Baik,Sedang,CEPAT,
P ,SMA,IPA,Lulus ,Sangat Baik,Sedang,TEPAT,
P ,SMA, IPS, Lulus , Sangat Baik, Sedang, CEPAT,
L ,SMK,Komputer,Lulus ,Baik,Sedang,TEPAT,
```

Gambar 5.1 Konversi Hasil Data

5.2 Hasil Visualisasi Data Setiap Attribut Dengan Menggunakan Weka

Tools weka digunakan untuk melihat hasil visualisasi setiap atribut dan digunakan untuk mengetahui hasil perhitungan menggunakan algoritma C5.0

1. Visualisasi Atribut Jenis Kelamin

Hasil visualisasi atribut tanggungan Jenis Kelamin dapat dilihat pada gambar 5.2

Gambar 5.2 Visualisasi Attribut Jenis Kelamin

Gambar 5.4 adalah visualisasi dari Attribut Jenis Kelamin. Sebanyak 488 data pada column selected atribut tidak terdapat *missing*. Distinct 10 Attribute unique 0 dengan jumlah mahasiswa Perempuan sebanyak 271 orang dan jumlah mahasiswa Laki-laki sebanyak 217 orang.

2. Visualisasi Attribut Sekolah Asal

Hasil visualisasi attribute Sekolah Asal dapat dilihat pada gambaar 5.3

Current relation		Selected a	ttribute			
Relation: stikom Instances: 488	Attributes: 7 Sum of weights: 488	Name Missing	sekolahasal 0 (0%)	Distinct: 3	Type: Nomina Unique: 0 (0%)	I
Attributes		No.	Label	Count	Weight	
All None Invert	Pattern		SMA SMK MA	257 205 26	257.0 205.0 26.0	
No. Name 1 jenkel 2 sekolasai 3 jurusan 4 statuskuliah 5 kriterianilai 6 ipk 7 kelaslulus		Class: kela	slulus (Nom)	205	V	Visualize All

Gambar 5.3 Visualisasi Attribut Sekolah Asal

Gambar 5.3 adalah visualisasi dari Attribut Sekolah Asal. Sebanyak 488 data pada column selected atribut tidak terdapat *missing*. Distinct dengan nilai 3 Attribute unique 0, yang berasal dari SMA ada 257 orang, berasal dari SMK ada 205 orang dan yang berasal dar MA ada 26 orang.

3. Visualisasi Attribut Jurusan Sekolah Asal

Hasil visualisasi attribut lanjut usia dapat dilihat pada gambar 5.4

Gambar 5.4 Visualisasi Attribut Jurusan Sekolah Asal

Gambar 5.4 adalah visualisasi dari Attribut Jurusan Sekolah Asal. Sebanyak 488 data pada column selected atribut tidak terdapat *missing*. *Distinct* dengan nilai 8 *Attribute unique* 1, pada statistic minimum terdapat niali 0, jurussan sekolah asal IPS berjumlah 199 orang, jurusan computer 85 orang, jurusan ekonomi 71 orang jurusan perkantoran 28 orang jurusan IPA 73 orang, jurusan Teknik 23 orang, jurusan Bahasa 6 orang dan jurusan agama 2 orang.

4. Hasil klasifikasi C5.0 menggunakan *tools weka* (*use data training*)

Test *Use Data Training* melakukan pengetesan data menggunakan data *training* itu sendiri. Dapat dilihat pada gambar 5.5

Test options	Classifier output									
 Use training set 	Time taken to t	est model	on traini	.ng data: 0.	01 second	ds				[
O Supplied test set Set	=== Summary ===									
O Cross-validation Folds 10	5 dilator 2 y									
O Percentage split % 66	Correctly Class	sified Inst	ances	334		68.4426	8			
	Kappa statistic	: :	is callees	0.30	78	51.5574	•			- 1
More options	Mean absolute e	rror		0.29	0.2976					- 1
	Root mean squar	ed error		0.38	0.3858					- 1
	Relative absolute error			80.75	54 %					- 1
(Nom) kelaslulus	Root relative :	squared err	or	89.9206 %						
Start Stop	Total Number of	Instances	1	488						
Result list (right-click for options)	=== Detailed Ad	curacy By	Class ===							
		TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Cla
		0.973	0.679	0.687	0.973	0.805	0.410	0.738	0.750	CEP
		0.446	0.031	0.717	0.446	0.550	0.509	0.813	0.540	LAM
		0.118	0.027	0.583	0.118	0.196	0.180	0.635	0.350	TEP
	Weighted Avg.	0.684	0.422	0.666	0.684	0.618	0.369	0.724	0.621	
	=== Confusion M	Matrix ===								
	a b c	< classi	fied as							
	287 4 4	a = CEPA	Т							
	35 33 6 1	b = LAME	BAT							
	96 9 14	C = TEPA	Υ.							
15.55.04 hours 140										
15.55.21 - trees.J48										7 1

Gambar 5.5 Klasifikasi C5.0 (Use Data Training)

Gambar 5.5 merupakan hasil klasifikasi *c*5.0 pada *tools* WEKA dengan menggunakan *use training set* yang menunjukan hasil 334 prediksi benar dengan akurasi sebesar 68.4426% dan 154 prediksi salah dengan persentasi 31.5574% dengan waktu klasifikasi selama 0.01 detik.

5. Hasil klasifikasi C5.0 menggunakan tools weka (5 Cross Validation)

Test 5 *Cross-Validation* melakukan pengetesan data dimana data *training* dibagi menjadi k buah *subset* (subhimpunan). Dimana k adalah nilai dari *fold*. Pada pengetesan ini nilai *fold* adalah 5. Selanjutnya untuk tiap dari *subset*, akan dijadikan data tes dari hasil klasifikasi yang dihasilkan dari k-1 *subset* lainnya.

Jadi, akan ada 5 kali tes. Dimana setiap data akan menjadi data tes sebanyak 1 kali dan menjadi data training sebanyak k-1 kali. Dapat dilihat pada gambar 5.6

Classifier										_
Choose J48 -C 0.25 -M 2										
Test options	Classifier output									
O Use training set O Supplied test set Set	=== Stratified (cross-vali	dation ==	-						
Cross-validation Folds 5 Percentage split % 66 More options	Correctly Class: Incorrectly Clas Kappa statistic Mean absolute e: Root mean square	ified Inst ssified In rror ed error	ances stances	320 168 0.25 0.31 0.40	017 01 002	65.5738 34.4262	alo de			
(Nom) kelaslulus	Relative absolu Root relative so Total Number of === Detailed Acc	te error quared err Instances curacy By	Class ===	84.10 93.28 488)83 % } %					
15:00:38 - trees.J48 15:26:37 - bayes.NaiveBayes 15:27:05 - trees.J48 15:55:21 - trees.J48 16:01:58 - trees.J48	Weighted Avg. === Confusion M a b c 286 9 0 35 33 6 96 22 1	TP Rate 0.969 0.446 0.008 0.656 atrix === < classi a = CEPA b = LAME c = TEPA	FP Rate 0.679 0.075 0.016 0.426 fied as T NAT T	Precision 0.686 0.516 0.143 0.528	Recall 0.969 0.446 0.008 0.656	F-Measure 0.803 0.478 0.016 0.562	MCC 0.403 0.394 -0.028 0.297	ROC Area 0.727 0.753 0.599 0.700	PRC Area 0.748 0.465 0.295 0.595	Cla CEP LAM TEP

Gambar 5.6 Klasifikasi C5.0 (Use Data Training)

Gambar 5.6 merupakan hasil klasifikasi *C5.0* pada *tools* WEKA dengan menggunakan *Cross Validation* yang menunjukan hasil 320 prediksi benar dengan akurasi sebesar 65.5738% dan 168 prediksi salah dengan persentasi 34.4262% dengan waktu klasifikasi selama 0 detik.

6. Hasil klasisfikasi C5.0 menggunakan tools weka (10 cross validation)

Test 10 *Cross-Validation* melakukan pengetesan data dimana nilai *fold* adalah 10. Selanjutnya untuk tiap dari *subset*, akan dijadikan data tes dari hasil klasifikasi yang dihasilkan dari k-1 *subset* lainnya. Jadi, akan ada 10 kali tes. Dimana setiap data akan menjadi data tes sebanyak 1 kali dan menjadi data training sebanyak k-1 kali

est options	Classifier output									
◯ Use training set										_
O Supplied test set Set	Time taken to k	wild mode	I. 0 05 se	conds						
Cross-validation Folds 10	Time buxen box	arra mode.		001100						
	=== Stratified	=== Stratified cross-validation ===								
O Percentage split % 66	=== Summary ===									
More options	Correctly Class	sified Inst	ances	320		65.5738	\$			
	Incorrectly Cla	ssified In	istances	168		34.4262	8			
	Kappa statistic	;		0.24	34					
Nom) kelaslulus	Mean absolute e	error		0.30	78					
	Root mean squar	red error		0.40)12					
Start Stop	Relative absolu	ite error		83.49	31 %					
lesult list (right-click for options)	Total Number of	squared er: E Instances	ror	93.51	.63 %					
		insounder	·	400						
15:00:38 - trees.J48	=== Detailed Ad	curacy By	Class ===							
15:26:37 - bayes.NaiveBayes										
15:27:05 - trees.J48		TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	C1
15:55:21 - trees.J48		0.966	0.699	0.679	0.966	0.797	0.376	0.735	0.766	CE
16:01:58 - trees.J48		0.392	0.048	0.592	0.392	0.472	0.410	0.737	0.454	LA
16:23:03 - trees.J48	Weighted Aug	0.050	0.035	0.316	0.050	0.087	0.034	0.590	0.299	IE.
	Weighted Avg.	0.000	0.400	0.077	0.000	0.070	0.200	0.700	0.000	
	=== Confusion N	Matrix ===								
	a b c	< class:	ified as							
	285 6 4 1	a = CEPA	AT							

Gambar 5.7 Merupakan Hasil Klasifikasi C5.0 Pada Tools WEKA

Pada gambar 5.7 dengan menggunakan 10 *Cross-Validation* yang menunjukan hasil 320 prediksi benar dengan akurasi sebesar 65.5738% dan 168 prediksi salah dengan persentasi 34.4262% dengan waktu klasifikasi selama 0.05 detik.

7. Hasil klasifikasi menggunakan tools weka (60% percentage split)

Tes *Percentage Split* hasil klasifikasi akan dites dengan menggunakan k% dari data tersebut. Pada tes ini akan digunakan 60% *Percentage Split* dari data.

est options	Classifier output									
O Use training set	Time taken to t	est model	on test s	plit: 0 sec	onds					
O Supplied test set Set	=== Summary ===									
Cross-validation Folds 10										
	Correctly Class	sified Inst	ances	125		64.1026	8			
 Percentage split % 60 	Incorrectly Cla	assified Ir	stances	70		35.8974	6			
Line outers	Kappa statistic	2		0.26	03					
More options	Mean absolute e	error		0.31	36					
	Root mean squar	ed error		0.39	28					
	Relative absolu	te error		84.08	73 %					
Nom) kelaslulus	Root relative s	squared erm	or	89.13	06 %					
Start Stop	Total Number of	Instances	Class ===	195						
esult list (right-click for options)										
15:00:38 - trees 148	1	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Cla
15:06:37 hoves NeiveDaves		0.982	0.598	0.694	0.982	0.813	0.495	0.798	0.780	CEP
15.20.57 - Dayes.NalveDayes		0.184	0.006	0.875	0.184	0.304	0.355	0.826	0.572	LAM
15:27:05 - trees.J48		0.159	0.132	0.259	0.159	0.197	0.032	0.620	0.279	TEP
15:55:21 - trees.J48	Weighted Avg.	0.641	0.377	0.631	0.641	0.575	0.363	0.764	0.627	
16:01:58 - trees.J48										
16:23:03 - trees.J48	=== Confusion N	atrix ===								
16:26:58 - trees.J48		<	fied ac							
16:30:00 - trees 148	a D C	< Classi	.ried as							
16:30:00 trace 140	111 0 2 1	a = CEPP	11 17 T							
		D = LAMD	1.44							

Gambar 5.8 Klasifikasi C5.0 (60% Percentage Split)

Gambar 5.8 merupakan hasil klasifikasi *C5.0* pada *tools* WEKA dengan menggunakan 60% *Percentage Split* yang menunjukan hasil 125 prediksi benar dengan akurasi sebesar 64.1026% dan 70 prediksi salah dengan persentasi 35.8974% dengan waktu klasifikasi selama 0 detik.

8. Hasil Klasifikasi C5.0 Menggunakan Tool WEKA (80% Percentage Split)

Tes Percentage Split hasil klasifikasi akan dites dengan menggunakan k%

dari data tersebut. Pada tes ini akan digunakan 80% Percentage Split dari data.

Classifier											
Choose J48 -C 0.25 -M 2											
Test options		Classifier output									
 Use training set 		Time taken to t	est model	on test s	plit: 0 sec	conds					
O Supplied test set Set		=== Summary ===									
O Cross-validation Folds 10		Compare las Classe	idiad Tasa		61		62 2440				
Percentage split % 80		Incorrectly Class	reified Tr	ances etances	37		37 7551	5 S			
		Kappa statistic	ssilled if	is callees	0.27	16	57.7551	•			
More options		Mean absolute e	rror		0.30)34					
		Root mean squar	ed error		0.38	367					
		Relative absolu	te error		79.38	377 %					
(Nom) kelaslulus	•	Root relative s	quared erm	or	86.05	556 %					
		Total Number of	Instances	3	98						
Start Stop											
Result list (right-click for options)		=== Detailed Ac	curacy By	Class ===							
15:00:29 troop 149			TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Cla
15:06:37 heree Neive Deves			0.981	0.523	0.697	0.981	0.815	0.547	0.823	0.781	CEI
15.20.37 - Dayes.IvalveBayes			0.238	0.026	0.714	0.238	0.357	0.338	0.877	0.675	LAN
15:27:05 - trees.J48		The distance of the second	0.130	0.160	0.200	0.130	0.158	-0.035	0.616	0.285	TER
15:55:21 - trees.J48		weighted AVg.	0.022	0.331	0.504	0.022	0.503	0.300	0.700	0.042	
16:01:58 - trees.J48		=== Confusion M	atrix ===								
16:23:03 - trees.J48		confusion n									
16:26:58 - trees.J48		abc <	classifie	d as							
16:30:00 - trees.J48		53 0 1 a	= CEPAT								
16:30:03 - trees.J48		5 5 11 b	= LAMBAT								
16:30:53 - trees.J48		18 2 3 C	= TEPAT								

Gambar 5.9 Klasifikasi C5.0 (80% Percentage Split)

Gambar 5.9 merupakan hasil klasifikasi *C5.0* pada *tools* WEKA dengan menggunakan 80% *Percentage Split* yang menunjukan hasil 61 prediksi benar dengan akurasi sebesar 62.2449% dan 37 prediksi salah dengan persentasi 37.7551% dengan waktu klasifikasi selama 0 detik.

9. Hasil perbandingan evaluasi akurasi dari data mahasiswa stikom

Setelah dilakukan analisis klasifikasi C5.0 pada tool WEKA menggunakan Use Training Set, 5 Fold Cross Validation, 10 Fold Cross Validation, 60% Percentage Split, dan 80% Percentage Split, maka diperoleh akurasi tertinggi yaitu dengan menggunakan Use Training Set dengan persentasi akurasi yaitu 88.4426% untuk Correctly Classified Instances dan 31.5574% untuk Incorrectly Classified Instances. Perbandingan hasil analisis dapat dilihat pada tabel 5.3.

Model Evaluasi	Akurasi	Jumlah Kelas	Persentasi
Use Training	Correctly Classified Instances	344	684426%
Set	Incorrectly Classified Instances	154	315574%
5 Fold Cross	Correctly Classified Instances	320	655738%
Validation	Incorrectly Classified Instances	168	344262%
10 Fold Cross	Correctly Classified Instances	320	655738%
Validation	Incorrectly Classified Instances	168	344262%
60%	Correctly Classified Instances	125	641026%
Percentage Split	Incorrectly Classified Instances	70	358974%
80%	Correctly Classified Instances	61	622449%
Percentage Split	Incorrectly Classified Instances	37	377551%

Tabel 5.3 Prbandingan Nilai Akurasi

Grafik hasil akurasi klasifikasi *C5.0* menggunakan *tool WEKA* dapat dilihat

pada gambar 5.10

Gambar 5.10 Hasil Akurasi Metode C5.0

Gambar 5.10 merupakan grafik persentasi hasil klasifikasi naive bayes dengan menggunakan 5 test options. Pada Use Training Set dengan jumlah kelas Correctly Classified Instances 344, Incorrectly Classified Instances 154, dan persentasi akurasi Correctly Classified Instances sebesar 684426% Incorrectly Classified Instances 315574%. Pada tes 5 Fold Cross Validation dengan jumlah kelas Classified Instances 320, Incorrectly Classified Instances 168, dan persentasi akurasi Correctly Classified Instances sebesar 65.5738%, Incorrectly Classified Instances 34.4262%. Pada tes 10 Fold Cross Validation dengan jumlah kelas Correctly Classified Instances 320, Incorrectly Classified Instances 168, dan persentasi akurasi Correctly Classified Instances sebesar 65.5738%, Incorrectly Classified Instances 34.4262%. Pada tes 60% Percentage Split dengan jumlah kelas Correctly Classified Instances 125, Incorrectly Classified Instances 70, dan persentasi akurasi Correctly Classified Instances sebesar 64.1026%, Incorrectly Classified Instances 35.8974%. Pada tes 80% Percentage Split dengan jumlah kelas Correctly Classified Instances 61, Incorrectly Classified Instances 37, dan persentasi akurasi Correctly Classified Instances sebesar 62.2449%, Incorrectly Classified Instances 37.7551%.

10. Pohon keputusan

Kemudian hasil klasifikasi tersebut digambarkan dalam bentuk pohon keputusan dapat dilihat pada gambar 5.11 Sebagai berikut:

Gambar 5.11 Centroid Cluster

Dari gambar 5.11 dapat disimpulkan bahwa jenis kelamin perempuan yang lulus cepat sebanyak 271 orang. untuk jenis kelamin laki-laki berkriteria sangat baik ada 146 orang, laki-laki berkriteria baik sekolah asal SMA dengan kelulusan lambat ada 17 orang, sekolah asal SMK kelulusan tepat ada 22 orang dan sekolah asal MA kelulusan lambat 5 orang. Laki-laki berkriteria cukup sekolah asalnya SMA dengan kelulusan lambat ada 9 orang, sekolah asal SMA kelulusan cepat 1 orang, sekolah asal orang MA kelulusan tepat 2 orang. Laki-laki berkriteria kurang dengan kelulusan lambat ada 6 orang, sedangkan laki-laki berkriteria sangat kurang berkelulusan lambat ada 9 orang.

5.3 Hasil Visualisasi Data Setiap Attribut Dengan Menggunakan Rapid Miner

Berikut merupakan bentuk visualisasi hasil dengan menggunakan tools Rapid Miner, yaitu :

1. Visualisasi proses metode *C5.0*

Visualisasi proses metode C5.0 pada tools Rapid Miner dapat dilihat pada

Gambar 5.12 Visualisasi Proses Metode C5.0

Pada gambar 5.12 dijelaskan bagaimana cara proses ID3 klasifikasi C5.0

menggunakan RapidMiner, langkah-langkah tersebut diantaranya :

- a. Pilih *import* data untuk memilih data mana yang akan di proses.
- b. Kemudian pilih *My Computer*, dan cari data yang akan di proses.
- c. Kemudian lanjukan kelangkah berikutnya *next* sampai *finish* agar data tersebut bisa di olah.

- d. Pada *coloumn Repository* ada beberapa *list*, kemudian pilih list *Local Repository*, didalam *list Repository* terdapat data yang telah di *import* dari *excel* ke *RapidMiner*, kemudian arahkan kursor tersebut ke data yang akan di olah, tahan dan tarik data tersebut ke arah *coloumn process*.
- e. Pada *coloumn Operators* terdapat *search box* setelah itu klik dan cari metode apa yang akan kita gunakan, yaitu metode *ID3*, kemudian arahkan kursor tersebut ke metode *ID3*, tahan dan tarik metode *ID3* tersebut ke arah *coloumn process*.
- f. Pada *coloumn process* terdapat 2 proses yang akan dilakukan perhitungannya, diantaranya *read excel*, dan *ID3*. Hubungkan 2 proses tersebut dengan cara, pada *read excel* terdapat (out) *output* yang kemudian di hubungkan ke (exa) *example set* yang tertera pada proses *clustering*. Kemudian pada tabel proses terdapat 2 fungsi proses, yang pertama read *excel* hubungkan ke *ID3* kemudian hubungkan ke res agar pencarian dapat dilanjutkan.
- g. Setelah semua fungsi terhubung, lakukan run untuk memulai proses clasificasi.
- Visualisasi data klasifikasi
 Visualisasi klasifikasi pada *Rapid Miner* dapat dilihat pada gambar 5.13

Data	Open in	Turbo Prep	Auto Model					Filter (48)		
Data	Row No.	kelaslulus	jenkel	sekolahasal	jurusan	statuskuliah	kriterianilai	ipk		
	1	CEPAT	Р	SMA	IPS	Lulus	Sangat Baik	Sedang		
Σ	2	LAMBAT	L	SMA	IPS	Lulus	Sangat Baik	Rendah		
Statistics	3	TEPAT	Р	SMA	IPS	Lulus	Sangat Baik	Sedang		
	4	TEPAT	Р	SMK	Komputer	Lulus	Sangat Baik	Sedang		
	5	CEPAT	Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi		
Charts	6	TEPAT	L	SMK	Komputer	Lulus	Sangat Baik	Sedang		
	7	CEPAT	Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi		
	8	CEPAT	Р	SMK	Ekonomi	Lulus	Sangat Baik	Sedang		
Advanced	9	CEPAT	Р	SMK	Perkantoran	Lulus	Sangat Baik	Sedang		
Charts	10	CEPAT	L	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi		
	11	CEPAT	L	SMK	IPS	Lulus	Sangat Baik	Tinggi		
	12	CEPAT	L	SMK	Ekonomi	Lulus	Sangat Baik	Sedang		
Annotations	13	CEPAT	Р	SMK	Ekonomi	Lulus	Sangat Baik	Tinggi		
	14	CEPAT	Р	SMK	Komputer	Lulus	Sangat Baik	Tinggi		
	15	TEPAT	Р	SMK	Komputer	Lulus	Sangat Baik	Sedang		

Gambar 5.13 Visualisasi Letak Data dan Klasifikasi

Pada gambar 5.13 menjelaskan data dari klasifikasi menggunakan metode c5.0 yang akan dirubah dalam bentuk pohon keputusan seperti gambar 5.14

Gambar 5.14 Visualisasi Pohon Keputusan

Pada gambar 5.14 menampilkan pohon keputusan hasil klasifikasi yang

akan di jelaskan pad gambar 5.15

Tree

```
statuskuliah = Aktif : LAMBAT {CEPAT=0, LAMBAT=15, TEPAT=0}
statuskuliah = Lulus
   ipk = Rendah
1
  kriterianilai = Baik: LAMBAT {CEPAT=0, LAMBAT=2, TEPAT=0}
1
      kriterianilai = Cukup: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
1.1
   1
       kriterianilai = Sangat Baik
   1
1
       | jenkel = L
Т
   1
          | sekolahasal = SMA
   1
      1
Т
      | | jurusan = IPS: LAMBAT {CEPAT=1, LAMBAT=1, TEPAT=0}
н
   . .
   ipk = Sedang
н
   | jenkel = L
н
     | kriterianilai = Baik
Т
   1
     | | sekolahasal = MA
н.
   1
   | | | jurusan = IPA: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
1
             jurusan = IPS: LAMBAT {CEPAT=0, LAMBAT=2, TEPAT=0}
       1
н.
   1
          1
I.
   1
       1
           1
              1
                  jurusan = Teknik: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
              sekolahasal = SMA
Т
   1
              jurusan = IPA: LAMBAT {CEPAT=1, LAMBAT=1, TEPAT=0}
Т
   1
       1
          1
             1
                 jurusan = IPS: LAMBAT {CEPAT=2, LAMBAT=7, TEPAT=3}
      1
   1
т
          jurusan = Komputer: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
      1
Т
   1
          1
      - T
             sekolahasal = SMK
L
   1
          - I -
      | | jurusan = Ekonomi: TEPAT {CEPAT=1, LAMBAT=0, TEPAT=2}
Т
   1
      | | jurusan = Komputer: TEPAT {CEPAT=2, LAMBAT=4, TEPAT=5}
т
   1
             jurusan = Perkantoran: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=2}
       1
Т.
   1
          1
              1
                 jurusan = Teknik: TEPAT {CEPAT=1, LAMBAT=1, TEPAT=3}
Т
   1
       1
           1
          kriterianilai = Cukup
   1
       1
Т
      1
          sekolahasal = MA: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=2}
1
   1
         | sekolahasal = SMA
I.
   1
      - T
```

```
jurusan = Bahasa: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
н
   1
     - I
      | | jurusan = IPS: LAMBAT {CEPAT=1, LAMBAT=3, TEPAT=2}
н.
   1
       | | jurusan = Komputer: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
н.
   1
       | | sekolahasal = SMK: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
н.
   1
         kriterianilai = Kurang
н
   1
       1
       | sekolahasal = MA: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
н
   1
      | | sekolahasal = SMA
   1
н
         jurusan = IPS: TEPAT {CEPAT=0, LAMBAT=1, TEPAT=2}
   1
      1
Т
       1
         kriterianilai = Sangat Baik
н
   1
       | | sekolahasal = MA
н
   1
         jurusan = Agama: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
L
   1
       1
Т
   1
      1
         | jurusan = IPA: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
Т
   1
      1
         jurusan = IPS: CEPAT {CEPAT=2, LAMBAT=0, TEPAT=0}
   1
      1
         | sekolahasal = SMA
Т
         jurusan = IPA: TEPAT {CEPAT=4, LAMBAT=1, TEPAT=5}
   1
      1
Т
         | | jurusan = IPS: TEPAT {CEPAT=21, LAMBAT=12, TEPAT=22}
Т
   1
      1
            sekolahasal = SMK
   1
      1
         - I
Т
         jurusan = Ekonomi: CEPAT {CEPAT=7, LAMBAT=3, TEPAT=4}
   1
      1
Т
         jurusan = Komputer: CEPAT {CEPAT=15, LAMBAT=2, TEPAT=10}
      1
т
   1
         jurusan = Perkantoran: CEPAT {CEPAT=2, LAMBAT=1, TEPAT=2}
   1
      1
н
         jurusan = Teknik: CEPAT {CEPAT=4, LAMBAT=2, TEPAT=2}
   1
      1
Т
         kriterianilai = Sangat Kurang: LAMBAT {CEPAT=0, LAMBAT=1, TEPAT=0}
      1
Т
   jenkel = P
Т
   kriterianilai = Baik
Т
   | sekolahasal = MA
Т
   .
       .
             jurusan = IPS: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
т
   1
       1
          - I
            jurusan = Komputer: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
н
   т
       Т
          1
             sekolahasal = SMA
н
   т
       Т
          1
             jurusan = IPA: CEPAT {CEPAT=2, LAMBAT=1, TEPAT=1}
т
   Т
       1
          1
         1
            jurusan = IPS: TEPAT {CEPAT=4, LAMBAT=2, TEPAT=6}
Т
   1
       1
         1
             sekolahasal = SMK
  1
т
      1
          iurusan = Ekonomi: CEPAT {CEPAT=4. LAMBAT=0. TEPAT=1}
т
   1
       1
```

```
| | sekolahasal = SMK
т
   1
       | | jurusan = Ekonomi: CEPAT {CEPAT=4, LAMBAT=0, TEPAT=1}
н.
   1
           | jurusan = Komputer: TEPAT {CEPAT=1, LAMBAT=0, TEPAT=1}
н
   1
       1
           | jurusan = Perkantoran: TEPAT {CEPAT=1, LAMBAT=0, TEPAT=1}
Т
   1
       1
              jurusan = Teknik: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
L.
       1
   1
       1
           kriterianilai = Cukup
н
   1
          sekolahasal = SMA: CEPAT {CEPAT=3, LAMBAT=0, TEPAT=0}
Т
   1
       1
          sekolahasal = SMK
Т
   1
       1
          jurusan = Ekonomi: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
Т
   1
       1
           jurusan = Komputer: CEPAT {CEPAT=2, LAMBAT=0, TEPAT=1}
Т
   1
       1
           | | jurusan = Perkantoran: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
Т
   1
       1
       1
           1
              jurusan = Teknik: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
Т
   1
           kriterianilai = Sangat Baik
   1
       1
Т
              jurusan = Agama: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=1}
       1
           1
   1
т
             jurusan = Bahasa
   1
       1
           1
т
              sekolahasal = MA: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
       1
           1
т
   .
              sekolahasal = SMA: TEPAT {CEPAT=0, LAMBAT=0, TEPAT=2}
т
   1
       1
           1
              jurusan = Ekonomi
н
   1
       1
           1
                  sekolahasal = SMK: CEPAT {CEPAT=16, LAMBAT=0, TEPAT=4}
н
   1
        н
           1
               1
              jurusan = IPA
н
   1
        Т
           1
                  sekolahasal = MA: CEPAT {CEPAT=2, LAMBAT=0, TEPAT=0}
т
   Т
        н
           1
               1
                   sekolahasal = SMA: CEPAT {CEPAT=20, LAMBAT=2, TEPAT=3}
               1
   т
        1
           1
               jurusan = IPS
   Т
       1
           sekolahasal = MA: CEPAT {CEPAT=2, LAMBAT=1, TEPAT=0}
   Т
       1
           sekolahasal = SMA: CEPAT {CEPAT=34, LAMBAT=2, TEPAT=9}
   1
       Т
           1
               1
   1
       1
           1
               jurusan = Komputer
                  sekolahasal = SMK: CEPAT {CEPAT=17, LAMBAT=0, TEPAT=6}
   1
       1
           1
               1
   1
       1
           1
               jurusan = Perkantoran
   1
       1
           1
               1
                  sekolahasal = SMK: CEPAT {CEPAT=9, LAMBAT=1, TEPAT=5}
   1
       1
           | jurusan = Teknik
т
   1
       1
           1
               sekolahasal = SMK: CEPAT {CEPAT=5, LAMBAT=0, TEPAT=1}
н
  ipk = Tinggi
1
      jenkel = L
1
   1
         sekolahasal = SMA: CEPAT {CEPAT=13, LAMBAT=0, TEPAT=0}
Т
   1
       1
         sekolahasal = SMK
1
      .
     jurusan = Ekonomi: CEPAT {CEPAT=3, LAMBAT=0, TEPAT=0}
| | jurusan = IPS: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
Т
   1 1
         | jurusan = Komputer
         1
            kriterianilai = Sangat Baik: LAMBAT {CEPAT=1, LAMBAT=1, TEPAT=1}
jurusan = Teknik: CEPAT {CEPAT=1, LAMBAT=0, TEPAT=0}
1
   1
      1
          1
   Т
      1
      jenkel = P
   1
1
      jurusan = Ekonomi: CEPAT {CEPAT=25, LAMBAT=0, TEPAT=0}
Т
   jurusan = IPA
   1 I
         | sekolahasal = SMA
Т
   1
      1
             kriterianilai = Sangat Baik: CEPAT {CEPAT=20, LAMBAT=0, TEPAT=1}
т
   1
      1
Т
   1
      1
          jurusan = IPS
          sekolahasal = MA: CEPAT {CEPAT=2, LAMBAT=0, TEPAT=0}
Т
   1
      sekolahasal = SMA
   1
      1
          1
| kriterianilai = Sangat Baik: CEPAT {CEPAT=26, LAMBAT=0, TEPAT=1}
         1
      1
jurusan = Komputer
Т
   1
      1
         | sekolahasal = SMK
1
   1 1
             | kriterianilai = Sangat Baik: CEPAT {CEPAT=10, LAMBAT=0, TEPAT=1}
   1
          1
1
      1
         jurusan = Perkantoran: CEPAT {CEPAT=2, LAMBAT=0, TEPAT=0}
   1
```

Gambar 5.15 Visualisasi Penjelasan Pohon Keputusan

3. Visualisasi nilai akurasi

Adapun visualisasi nilai akurasi metode C5.0 dapat dilihat pada gambar

5.16

Repository ×	Process		Parameters ×	
🕒 Import Data 🛛 🖃 👻	Process >	100% 🔑 🔎 📮 🍹 💣 🖽	Filter Examples	
Samples	Process		filters	The Add Filters
DB	Read Excel Filter Examples	Cross Validation	condition class	custom filters V
Local Repository (dina)	Dinp 🖣 fil 📩 out D	exa 🎇 mod		
data (dina)	unm	tes	invert filter	Œ
P processes (dina) P akurasi kelulusan (dina - v1 1/20/19 4-48 PM - 5		per		
Data bang edo (dina - v1, 1/18/19 3:15 PM - 4 kB		per D		
🕼 data bang edo (dina - v1, 1/20/19 5:20 PM - 2 kB)				
<				
Operators ×			Hide advanced parar Change compatibility	neters (9.1.000)
Tota Access (23)				
Files (16)			Help ×	
Read (15)			Filter Exam	ples
Read Excel	Leverage the Wisdom of Crowds to get operator	recommendations based on your process design!	Tags: <u>Select</u> , <u>Keep</u> , <u>Remo</u>	ve, Drop, Delete, Rows,
Read Excel with Format		Activate Miledam of Crowde	Cases, Instances, Lines, O Missing, Filter	Observations, Filter
We found "Spreadsheet Table Extraction",	V V	Adivate misuom of orowds	Synopsis	
MeaningCloud Text Analytics" and 5 more results in the Marketplace. <u>Show mel</u>	Data Editor X		This Operator selects w	hich Examples of an 🗸

Gambar 5.16 Visualisasi Akurasi Metode C5.0

Pada gambar 5.16 dijelaskan bagaimana cara proses mendapatkan nilai akurasi metode C5.0 menggunakan RapidMiner, langkah-langkah tersebut diantaranya :

- Cari read by excel pada kolom perator kemudian tarik ke kolom process dan masukan data yang ingin di proses.
- b. Kemudian cari filter example dan tarik ke kolom proces
- c. Kemudian tambahkan operator cross validation ke kolom proces
- Koneksikan setiap operator ke operator lain pada cross validation ambil bagian per dan hubungkan ke res
- e. Setelah semuanya terhubung lakukan proses run, maka akan muncul tampilan seperti gambar 5.17

Result History	💲 Performance	eVector (Performance (2)) 🛛 🗙								
	Criterion	Table View O Plot View								
%	accuracy									
Performance	карра	accuracy: 64.97% +/- 5.94% (mici	accuracy: 64.97% +/- 5.94% (micro average: 64.96%)							
			true CEPAT	true LAMBAT	true TEPAT	class precision				
Ī		pred. CEPAT	254	26	78	70.95%				
Description		pred. LAMBAT	8	33	11	63.46%				
		pred. TEPAT	33	15	30	38.46%				
		class recall	86.10%	44.59%	25.21%					
Annotations										

Gambaar 5.17 Visualisasi Akurasi Metode C5.0

Pada gambar 5.17 menjelaskan bahwa akurasi perhitungan c5.0 adalah sbesar 64.97%.

5.4 PERBANDINGAN HASIL KLASIFIKASI NAIVE BAYES

Perbandingan hasil klasifikasi *naive bayes* menggunakan 3 *tool* yaitu *Excel*, *WEKA*, dan *RapidMiner* dapat dilihat pada tabel 5.4.

Perbandingan		Excel	WEKA	RapidMiner
Jumlah	Kelas	362	287	254
"CEPAT"				
Jumlah	Kelas	33	33	33
"TEPAT"				
Jumlah	Kelas	48	14	30
"LAMBAT"				

Tabel 5.4 Perbandingan Hasil Klasifikasi C5.0

Perbandingan	Excel	WEKA	RapidMiner
Akurasi	64,139%	68.4426% (Correctly	64.97%
		Classfied Instance)	
		dan 31.5574%	
		(Incorrectly Classfied	
		Instance)	

Pada tabel 5.4 diperoleh perbandingan hasil perhitungan klasifikasi prediksi lama masa studi mahasiswa menggunakan algoritma *C5.0* dengan menggunakan keseluruhan *data training* menjadi *data testing* pada *tool Excel*, *WEKA*, dan *RapidMiner*. Dapat disimpulkan bahwa perhitungan menggunakan *tool Excel* dan *RapidMiner* memiliki hasil akurasi yang sama, pada *tool Excel* kelas "CEPAT" berjumlah 362 mahasiswa, pada kelas "TEPAT" berjumlah 33 mahasiswa dan pada kelas "LAMBAT" berjumlah 48 mahasiswa dan pada *tool RapidMiner* kelas "CEPAT" berjumlah 254 mahasiswa, pada kelas "TEPAT" berjumlah 33 mahasiswa dan pada kelas "CEPAT" berjumlah 34 mahasiswa dan pada kelas "CEPAT" berjumlah 254 mahasiswa, pada kelas "TEPAT" berjumlah 33 mahasiswa dan pada kelas "CEPAT" berjumlah 30 mahasiswa, sedangkan pada *tool WEKA* kelas "CEPAT" berjumlah 287 mahasiswa. Hasil akurasi pada *tool Excel* yaitu sebesar 64,139%, sedangkan pada *tool WEKA Correctly Classfied Instance* sebesar 68.4426% dan *Incorrectly Classfied Instance* sebesar 31.5574% dan pada *Rapid Miner* sebesar 64,97%.