BAB V

HASIL ANALISIS DAN VISUALISASI

5.1 PRAPROSES DATA

Pada tahap ini dilakukan beberapa persiapan proses data. Persiapan proses data tersebut yaitu :

5.1.1 Data Mentah

Data ini merupakan data pasien Puskesmas Talang Bakung sebelum dilakukan penyeleksian data. Data tersebut dapat dilihat pada gambar 5.1 berikut ini:

No	🗾 Nama	▼ No. Reg	▼ tensi	🕶 umu Lk 💌	umur Pr	🔹 Kode Penyakit 📘	🖌 🔹 Nama Penyakit	Jenis Pasien 💌	tanggal 🗾 💌
	1 Shohong	M.18-5032	120/70	45		B 20	HIV	L	02/11/2020
	2 Nurkholis	M.20-6416	120/80	40		E 12	Diabetes	L	02/11/2020
	3 Apriliam	M.17-1747	130/90		18	N 61	Mastitis	L	02/11/2020
	4 Rosiana	M.17-1069	140/80		45	I 10	Hipertensi	L	02/11/2020
	5 Arko'ah	M.17-3456	160/90		40	H 52.1	Kerabunan	L	02/11/2020
	6 Juliantri	M.19-540	130/80		45	E 7.8	Gangguan tiroid tertentu lainnya	L	02/11/2020
	7 Rahmadani	M.17-2858	120/70		40	Miyoma		L	02/11/2020
	8 Marhem	M. 19-5483	120/70	48		E 12	litus – Malnutrisi berhubungan	L	02/11/2020
	9 Susmawati	M.17-2018	120/70		44	J 01	Sinusitis maksilaris akut	L	02/11/2020
	10 Rosmiati	M.19-5549	110/70		53	BC		L	02/11/2020
	11 M. Syafii	M.17-571	120/70	54		Comutnt		L	02/11/2020
	12 Ruliah	M.18-4299	120/70		46	B 29	XXXX	L	02/11/2020
	13 Siti Habibi	M.18-1323	170/90		46	L 23	rmatitis kontak alergi karena log	В	02/11/2020
	14 Ali Maslin	M.19-255	90/60	36		К 29	Haemorrhagic gastritis akut	L	02/11/2020
	15 Siti Ratnasari	M.18-4886	110/70		25	H 52.7	Gangguan refraksi	L	02/11/2020
	16 Malik	M.18-4302	120/150	35		N 12	terstitial , tidak ditetapkan seba	В	02/11/2020
	17 Eka wahyuni	18-4483	156/58		38	H 52.7	Gangguan refraksi	В	03/11/2020
	18 Mariati	18-291	172/291		51	E 11	-dependent diabetes mellitus o	L	03/11/2020
	19 Imam Choirudin	17-51	248/136	44		11	ng hipertensi dengan (kongestif	L	03/11/2020
	20 Sarwanti	20-6421	149/97		38	R 51	sakit kepala	В	03/11/2020

Gambar 5.1 Data Mentah Pasien Puskesmas Talang Bakung

5.1.2 Seleksi Data Mentah

Seleksi data mentah ini merupakan proses penyeleksian data terhadap data yang tidak lengkap dan data yang sama. Seleksi data ini memfokuskan pada atribut-atribut yang digunakan untuk perhitungan. Adapun data tersebut dapat dilihat pada gambar 5.2:

No 👻	Kode Penyakit	Penyakit 👻	umur 🔻	jenis pasien	jenis kelamin
1	B 20	2	2	1	1
2	E 12	15	2	1	1
3	I 10	30	2	1	2
4	I 10	30	2	1	2
5	H 52.1	25	2	1	2
6	E 07.8	12	2	1	1
7	E 12	15	2	1	2
8	J 01	36	2	2	2
9	L 23	47	2	1	1
10	K 29	40	1	1	2
11	H 52.7	26	2	2	1
12	N 12	57	2	2	2
13	H 52.7	26	3	1	2
14	E 11	14	2	1	1
15	11	31	2	2	2
16	R 51	62	3	1	2
17	E 05	11	1	1	1
18	G 40	20	2	1	1
19	J 01	36	1	2	1

Gambar 5.2 Hasil Seleksi Data Mentah

5.1.3 Konversi Hasil Data

Data yang telah diseleksi kemudian disimpan dengan format .csv, ini dilakukan agar data dapat dimasukkan kedalam *tools* Weka dan Rapidminer. Adapun bentuk data tersebut dapat dilihat pada gambar 5.3 :

```
"Penyakit", "umur", "jenis pasien", "jenis kelamin"
"2","2","1","1"
"15","2","1","1"
"30", "2", "1", "2"
"30", "2", "1", "2"
"25","2","1","2"
"12", "2", "1", "1"
"15", "2", "1", "2"
"36", "2", "2", "2"
"47", "2", "1", "1"
"40","1","1","2"
"26","2","2","1"
"57","2","2","2"
"26","3","1","2"
"14","2","1","1"
"31", "2", "2", "2"
"62", "3", "1", "2"
"11", "1", "1", "1"
"20", "2", "1", "1"
"36","1","2","1"
"1","1","1","1"
"35","3","1","2"
"14","2","1","2"
"14","2","1","1"
"48","1","1","2"
"47", "2", "1", "2"
"34","1","1","2"
"6","2","1","2"
"52", "3", "2", "2"
      ."3"."1"."2"
"52"
"3", "2", "1", "2"
"52","2","1","1"
"56","2","1","2"
"44","2","1","2"
"14", "2", "1"
                 ."2"
"4",<sup>"</sup>2",<sup>"</sup>1",<sup>"</sup>1"
"E0" "3" "4" "3"
```

Gambar 5.3 Konversi Hasil Data

5.2 HASIL VISUALISASI DATA SETIAP ATRIBUT DENGAN

MENGGUNAKAN WEKA

Tools Weka digunakan untuk melihat hasil visualisasi setiap atribut dan digunakan untuk mengetahui hasil perhitungan menggunakan algoritma *K-Means*. Berikut visualisasi pada setiap atribut :

1. Visualisasi Atribut Penyakit

Hasil visualisasi atribut penyakit dapat dilihat pada gambar 5.4 berikut ini :

Gambar 5.4 Visualisasi Atribut Penyakit

Gambar 5.4 adalah visualisasi dari atribut penyakit. Sebanyak 260 data pada column *selected atribut* tidak terdapat *missing*. Pada statistic minimum terdapat nilai 1, statistic maximum terdapat nilai 67, statistic mean (rata-rata) terdapat nilai 33,215, statistic standard deviasi terdapat nilai 16,154.

2. Visualisasi Atribut Umur

Hasil visualisasi atribut tanggungan umur dapat dilihat pada gambar 5.5 berikut ini :

Gambar 5.5 Visualisasi Atribut Umur

Gambar 5.5 adalah visualisasi dari atribut umur. Sebanyak 260 data pada column *selected atribut* tidak terdapat *missing*. Pada statistic minimum terdapat nilai 1, statistic maximum terdapat nilai 4, statistic mean (rata-rata) terdapat nilai 1,958, statistic standard deviasi terdapat nilai 0,752.

3. Visualisasi Atribut Jenis Kelamin

Hasil visualisasi atribut Jenis Kelamin dapat dilihat pada gambar 5.6 berikut ini :

Name: jenis kelamin			Type: Numeric	
Missing: 0 (0%)	Distinct: 2		Unique: 0 (0%)	
Statistic		Value		
Minimum		1		
Maximum		2		
Mean		1.65		
StdDev		0.478		
ee: ionie kolomin (Num)				Vieualiz

Gambar 5.6 Visualisasi Atribut Jenis Kelamin

Gambar 5.6 adalah visualisasi dari atribut jenis kelamin. Sebanyak 260 data pada column *selected atribut* tidak terdapat *missing*. Pada statistic minimum terdapat nilai 1, statistic maximum terdapat nilai 2, statistic mean (rata-rata) terdapat nilai 1,65, statistic standard deviasi terdapat nilai 0,478.

4. Visualisasi Atribut Jenis Pasien

Hasil visualisasi atribut jenis pasien dapat dilihat pada gambar 5.7 berikut ini:

Name: jenis pasien			Type: Numeric	
Missing: 0 (0%)	Distinct: 2		Unique: 0 (0%)	
Statistic		Value		
Minimum		1		
Maximum		2		
Mean		1.312		
StdDev		0.464		
				- Viewelier

Gambar 5.7 Visualisasi Atribut Jenis Pasien

Gambar 5.7 adalah visualisasi dari atribut jenis pasien. Sebanyak 260 data pada column *selected atribut* tidak terdapat *missing*. Pada statistic minimum terdapat nilai 1, statistic maximum terdapat nilai 2, statistic mean (rata-rata) terdapat nilai 1,312, statistic standard deviasi terdapat nilai 0,464.

5.3 HASIL ANALISIS CLUSTER DENGAN TOOLS WEKA

Guna melakukan perhitungan pada tools weka maka dilakukan pengambilan pusat cluster terlebih dahulu. Pada weka pengambilan pusat cluster diambil secara random dan di sebutkan nilainya dari 4 atribut. Berikut cluster awal pada perhitungan menggunakan Weka :

С	lusterer output		
ſ			
	Attributes:	4	A
		Penyakit	
		umur	
		jenis pasien	
		jenis kelamin	
	Test mode:	evaluate on training data	
	=== Clusterin	ng model (full training set) ===	
	14/s an s		
	kneans		
	Number of its	erations: 3	
	Within cluste	r sum of squared errors: 53.299038211984175	
	Initial start	ting points (random):	
	Cluster 0: 30	0,2,2,2	
	Cluster 1: 14	4,1,2,1	
	Cluster 2: 40	0,2,1,2	
	Missing value	es globally replaced with mean/mode	
	Final cluster	r centroids:	
		Cluster#	v .

Gambar 5.8 Pengambilan Cluster Awal

Selanjutnya adalah menganalisis Cluster yang digunakan menggunakan Tools Weka. Berikut adalah gambaran Cluster yang terbentuk. Cluster yang terbentuk dapat dilihat pada gambar 5.9 :

usterer output				
Cluster 2: 40,.	2,1,2			
Missing values	globally repl	aced with m	ean/mode	
	9			
Final cluster (centroids:			
		Cluster#		
Attribute	Full Data	0	1	2
	(260.0)	(51.0)	(91.0)	(118.0)
Penyakit	33.2154	33.902	33.011	33.0763
umur	1.9577	1.8824	1.9121	2.0254
jenis pasien	1.3115	2	1.3297	1
jenis kelamin	1.65	2	1	2
Time taken to 1	build model (f	ull trainin	g data) : (.02 seconds
=== Model and (evaluation on	training se	t ===	
Clustered Insta	ances			
0 51 (2)	081			
1 91 (3)	58)			
2 118 (4	5%)			
	,			
4				

Gambar 5. 9 Analisis Cluster

Kemudian didapatlah jumlah dalam setiap clusternya adalah sebagai berikut ini :

Cluster 0 sebanyak 51 data atau sebesar 20%

Cluster 1 sebanyak 91 data atau sebesar 35%

Cluster 2 sebanyak 118 data atau sebesar 45%

Gambar 5.10 Grafik Pembagian Cluster

Dapat disimpulkan dari hasil cluster dengan tools WEKA adalah sebanyak 260 data pasien di Puskesmas Talang Bakung yang terbagi menjadi 3 cluster dimana dari masing-masing cluster nantinya akan dikelompokan kedalam 3 prioritas, pada cluster 1 terdapat 51data pasien, kemudia cluster 2 terdapat 91 data pasien, dan cluster 3 terdapat 118 data pasien.

5.4 HASIL VISUALISASI DATA SETIAP ATRIBUT DENGAN MENGGUNAKAN RAPID MINER

Berikut merupakan bentuk visualisasi atribut data pasien pada Puskesmas Talang Bakung dengan menggunakan tools RapidMiner, yaitu :

1. Visualisasi proses metode k-means

	•	Views:	Design	Results	Turbo Prep	Auto Model	Deployments		Find	data, operatorset	° 🔑	All Studio 🔻
Repository ×	Process								Paramete	rs X		
🕒 Import Data 🛛 = 💌	Process					🔎 🔎 🐚	r 🙀	ø 🗵	📓 Cluste	ring (k-Means)		
	Process								🖌 add clu	ster attribute		1
Samples Local Repository (Local)									add as	label		(1)
Connections) inp							res				
🕨 🔁 data	1	Retrieve data clean	Repla	ace Missing Val	~	Clustering		res (remov	unlabeled		٢
 Kristanto 				exa 😽 exa 🖉	(e	ca 🔝 cu)			k		3	
data clean (7/19/21 4:52				pre	~	1						
DB (Legacy)			•						max runs		10	٢
< III >									🗸 determ	ine good start value	s	© 🗸
Operators X									Show:	advanced paramete	r <u>s</u>	
missing X									✓ Chang	e compatibility (9.9.	002)	
T Filter Examples												
Teansing (9)									Help	×		
💌 📇 Missing (8)									k I	40000		^
Replace Missing Value:									Cor	rurrency		
impute Missing Values									Tags: Unsu	pervised. Clusterin	g. Segmentati	on. Groupins
Declare Missing Value									Similarity,	Similarities, Euclide	an, Distances	Centroids, K
Replace Infinite Values	Leverage the Wise	dom of Crowds to get or	erator recomm	endations based on	vour process des	ionl			K means, k	means		
We found "Database Envil in	Coverage and Wish	aoni of orowas to get of	crator recontinu		i jour process des	.y			Synopsis			
the Marketplace. Show me!			 ✓ 	Activate Wisdom o	f Crowds				This Oper- algorithm	tor performs clus	tering using f	he <i>k-means</i> ∨

Gambar 5.11 Visualisasi Proses Metode K-Means Data Pasien

Pada gambar 5.11 dijelaskan bagaimana cara proses clustering k-means menggunakan RapidMiner, langkah-langkah tersebut diantaranya :

- 1) Klik import data untuk memilih data mana yang akan di proses.
- 2) Kemudian klik My Computer, dan cari data yang akan di proses.
- Lanjutkan kelangkah berikutnya, yaitu next sampai finish agar data tersebut bisa di olah.
- Pada coloumn Repository ada beberapa list, kemudian pilih list Local Repository, didalam list Repository terdapat data yang telah di import dari

excel ke RapidMiner, kemudian arahkan kursor tersebut ke data yang akan di olah, tahan dan tarik data tersebut ke arah coloumn process.

- 5) Pada coloumn Operators terdapat search box setelah itu klik dan cari metode apa yang akan kita gunakan, yaitu metode k-means, kemudian arahkan kursor tersebut ke metode k-means, tahan dan tarik metode kmeans tersebut ke arah coloumn process.
- 6) Pada coloumn process terdapat 2 proses yang akan dilakukan perhitungannya, diantaranya Retrieve rapidminer dan Clustering. Hubungkan 2 proses tersebut dengan cara, pada Retrieve rapidminer terdapat (out) output yang kemudian di hubungkan ke (exa) example set yang tertera pada proses clustering. Kemudian pada tabel proses terdapat 2 fungsi proses, yang pertama (clu) cluster model, dan yang ke dua (clu) clustered set. Ke dua fungsi tersebut di hubungkan, (clu) cluster model dihubungkan ke (res) result 1, sedangkan yang ke dua (clu) clustered set dihubungkan ke (res) result 2.
- 7) Setelah semua fungsi terhubung, lakukan run untuk memulai proses clustering.

Cluster Cluster Data Statistics Statistics	ter Model (Clustering Result History en in Turbo P ow No. id	i) ×		Exar	npleSet (//Local Rep	ository/Kristanto/c eSet (Clustering)	lata clean) ×		Repository ×		
Data Copen Data Row 1 2 Statistics 3	Result History en in Turbo P ow No. id	rep 🛱 Auto Model			📕 Exampl	eSet (Clustering)	~				
Data Open Data 1 2 Statistics 2	en in Turbo P ow No. id	rep 🛱 Auto Model							🕒 Import Data 🛛 = 🔻		
Data Row 1 Statistics 3	ow No. id	aluator				Filter (26	i0 / 260 examples): all	•	Training Resources (connected) Community Samples (connected)		
1 2 Statistics		cluster	Penyakit	umur	jenis pasien	jenis kelamin			Samples		
Σ 2 Statistics	1	cluster_1	2	2	1	1		^	Local Repository (Local)		
Statistics 2	2	cluster_1	15	2	1	1) 🧮 data		
5	3	cluster_2	30	2	1	2			 Kristanto data clean (7/19/21 4:52 PM - 10 k 		
4	4	cluster_2	30	2	1	2					
5	5	cluster_2	25	2	1	2			DB (Lense)		
Visualizations 6	6	cluster_1	12	2	1	1			, B (college))		
7	7	cluster_1	15	2	1	2					
	8	cluster_2	36	2	2	2					
9	9	cluster_0	47	2	1	1					
Annotations 10) 10	cluster_2	40	1	1	2					
11	11	cluster_2	26	2	2	1					
12	2 12	cluster_0	57	2	2	2					
13	3 13	cluster_2	26	3	1	2					
14	14	cluster_1	14	2	1	1					

2. Visualisasi letak data dan klasternya

Gambar 5.12 Visualisasi Letak Data dan Klasternya Data Obat

Gambar 5.12 merupakan hasil pengklasteran menggunakan Rapid Miner dengan menggunakan 3 atribut yaitu diantaranya adalah kode penyakit, umur, jenis kelamin dan jenis pasien.

3. Visualisasi cluster model

		Views: Design	Results Turbo Prep	Auto Model	Deployments	Find data, operatorsetc 🔎 All Studio 🔻
📓 Cluster Model (Clustering) 🛛 🛛		1	ExampleSet (//Local Repository/	Kristanto/data clea	an) X	Repository ×
	Result History		ExampleSet (0	Clustering)		🕒 Import Data 🛛 🗉 🔻
Description	Cluster Model					Training Resources (connected) Supples Samples
Folder View	Cluster 2: 111 items Total number of items: 260					
Graph						processes DB (Legacy)
Centroid Table						
Plot						

Gambar 5.13 Visualisasi Cluster Model

Gambar 5.13 merupakan hasil analisis cluster menggunakan Rapid Miner, diketahui bahwa total item yang diolah berjumlah 260 data dengan 3 Cluster. pada Cluster 1 terdapat jumlah penyakit sebanyak 83 data, pada Cluster 2 terdapat jumlah penyakit sebanyak 66 data, dan pada Cluster 3 terdapat jumlah penyakit sebanyak 111 data.

4. Visualisasi Grafik Hasil Cluster

Gambar 5.14 Grafik Analisis Cluster menggunakan Rapid Miner

Gambar 5.14 merupakan hasil analisis cluster menggunakan Rapid Miner, diketahui bahwa total item yang diolah berjumlah 260 data dengan 3 Cluster. pada Cluster 0 terdapat jumlah data sebanyak 83 dengan nilai total rasio yaitu 31,92%, pada Cluster 1 terdapat jumlah data sebanyak 66 dengan nilai total rasio yaitu 25,38% dan pada Cluster 3 terdapat jumlah siswa sebanyak 111 dengan nilai total rasio yaitu 42,69%.

5.5 PERBANDINGAN PERHITUNGAN

Berikut ini adalah Hasil perbandingan perhitungan antara perhitungan manual, Weka dan Rapid Miner. Hasil perbandingan dapat dilihat pada tabel 5.1 :

Keterangan	Perhitungan Manual	Perhitungan Menggunakan Tools Weka	Perhitungan Menggunkanan Tools Rapidminer	
Jumlah Cluster	3	3	3	
Jumlah Iterasi	5	3	-	
	Cluster $1 = 98$	Cluster $1 = 51$	Cluster $1 = 83$	
Jumlah Item	Cluster $2 = 99$	Cluster $2 = 91$	Cluster $2 = 66$	
	Cluster $3 = 63$	Cluster $3 = 118$	Cluster $3 = 111$	

Tabel 5.1 Perbandingan Perhitungan