BAB V

IMPLEMENTASI DAN PENGUJIAN SISTEM

5.1 HASIL IMPLEMENTASI

Pada tahap ini penulis mengimplementasikan hasil rancangan yang telah dibuat. Adapun hasil implementasi dari penelitian ini dapat dilihat pada gambar 5.1.

Gambar 5.1 Prototype Alat Monitoring Rumah Burung Walet

Pada gambar 5.1 merupakan *prototype* dari sistem monitoring rumah burung walet yang telah dirancang penulis. Terlihat pada sisi depan terdapat 2 buah kipas dan di belakang dari kipas terdapat rangkaian keseluruhan pada alat ini.

Gambar 5.2 Gambar Rangkaian NodeMCU

Selanjutnya, ada 2 buah kipas yang berfungsi sebagai menetralkan kondisi suhu ruangan pada rumah burung walet. Pada saat kondisi suhu rumah burung walet dalam keadaan 27° - 29°C maka otomatis kipas akan berputar secara otomatis. Kipas akan berputar sesuai keadaan suhu ruangan, dimana saat suhu berada di bawah 27° maka suhu angat yang di butuhkan begitu juga sebaliknya.

Gambar 5.3 Kipas Pendingin dan Kipas Pemanas

5.2 PENGUJIAN WHITE BOX PERANGKAT LUNAK

Pengujian *white box* didasarkan pada pengecekan terhadap detail perancangan, menggunakan struktur kontrol dari desain program secara prosedur untuk membagi pengujian ke dalam beberapa kasus pengujian.

Hal pertama yang dilakukan dalam pengujian perangkat lunak adalah memberikan tegangan sumber ke alat. Kemudian meletakkan alat dengan posisi antena gps menghadap keatas.

Pengujian perangkat lunak dilakukan untuk mendapatkan informasi mengenai kemampuan perangkat lunak yang digunakan dalam penelitian. Untuk bahasa pemograman c++ arduino pengujian meliputi pembuatan file baru, tahap menulis kode dan terakhir ialah mengkompilasi dan mengupload program. Adapun tahapan-tahapan tersebut adalah sebagai berikut :

1. Arduino Ide

Gambar 5.4 File Baru Arduino

Tahapan ini merupakan tahapan utama, karena dalam tahapan ini dibuat alur sistem yang akan diimplementasikan. Tahapan ini dapat dilihat pada gambar 5.5 :

Gambar 5.5 Menulis Kode Arduino

pada tahap akhir ini dilakukan proses kompilasi dari kode c++ ke dalam hexa. File hexa inilah yang akan diupload kedalam *hardware* diarduino. Kompilasi program dilakukan agar arduino bisa mengeksekusi kode yang sudah dibuat. Proses kompilasi dan upload kode dapat dilihat dalam gambar 5.6 sebagai berikut :

Gambar 5.6 Proses Kompilasi dan Upload

2. Tampilan Interface android

Pada gambar 5.7 di bawah ini, merupakan tampilan *interface* android dari perancangan sistem monitoring rumah burung walet, yang mana dapat di lihat pada tampilan monitoring android dibawah ini :

Gambar 5.7 Tampilan Interface Android

Gambar 5.8 Tampilan Interface Android

Pada saat kondisi suhu dan kelembapan ruangan pada rumah burung walet dalam keadaan tidak normal atau berada pada suhu 30°C, maka sensor akan mengirimkan sinyal analog yang nantinya sinyal tersebut akan di konversikan oleh aplikasi berupa data dimana suhu dan kelembapan akan di tampilkan.

5.3 PENGUJIAN BLACK BOX PERANGKAT LUNAK

Black Box Testing atau yang sering dikenal dengan sebutan pengujian fungsional merupakan metode pengujian Perangkat Lunak yang digunakan untuk menguji perangkat lunak tanpa mengetahui struktur internal kode atau Program.

Pada *Black Box Testing* dilakukan pengujian yang didasarkan pada detail aplikasi seperti tampilan aplikasi, fungsi-fungsi yang ada pada aplikasi, dan kesesuaian alur fungsi dengan bisnis proses yang diinginkan oleh customer.

Pengujian *Black box* ini lebih menguji ke Tampilan Luar (*Interface*) dari suatu aplikasi agar mudah digunakan oleh *Customer*. Pengujian ini tidak melihat dan menguji *souce code program*. Pengujian *Black box* bekerja dengan mengabaikan struktur kontrol sehingga perhatianya hanya terfokus pada informasi *domain*. Hasil pengujian dengan metode Black Box dapat dilihat pada tabel 5.1:

No	Skenario	Test Case	Hasil yang	Hasil	Status
140	Pengujian	Test Case	diharapkan	Pengujian	Status
1	Mengosongkan	Username	Sistem akan	Sesuai	Valid
	semua isian data	: -	menolak	harapan	
	login, lalu langsung	Password	akses login		
	mengklik tombol	: -	dan		
	'Login'.		menampilkan		

Tabel 5.1 Pengujian Black Box Perangkat Lunak

			pesan "Login		
			gagal"		
2	Hanya mengisi data	Username	Sistem akan	Sesuai	Valid
	Username admin	: admin	menolak	harapan	
	dan mengosongkan	Password	akses login		
	data password, lalu	: -	dan		
	langsung mengklik		menampilkan		
	tombol 'Login'.		pesan "Login		
			gagal"		
3	Memasukkan data	Username	Sistem akan	Sesuai	Valid
	login yang benar	: admin	menerima	harapan	
	dan mengklik	Password	akses login		
	tombol 'Login'.	: admin	dan		
			menampilkan		
			menu dari		
			aplikasi		
			monitoring.		
4	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'Realtime Sensor'.	'Realtime	menampilkan	harapan	
		Sensor'	suhu dan		
		pada	kelembapan		
		menu	ruangan		
		aplikasi.	secara		
			realtime		

No	Skenario	Tost Coso	Hasil yang	Hasil	Status
INU	Pengujian	Test Case	diharapkan	Pengujian	Status
5	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'Grafik Sensor'.	'Grafik	menampilkan	harapan	
		Sensor'	suhu dan		
		pada	kelembapan		
		menu	ruangan pada		
		aplikasi.	rentang waktu		
			tertentu.		
6	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'Realtime Kamera'.	'Realtime	membuka	harapan	
		Kamera'	browser untuk		
		pada	menampilkan		
		menu	fitur-fitur		
		aplikasi.	kamera dan		
			gambar dari		
			kamera.		
7	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'History Sensor'.	'History	menampilkan	harapan	
		Sensor'	hasil-hasil		
		pada	input dari		
		menu	sensor berupa		
		aplikasi.	suhu dan		
			kelembapan		
			selama alat		
			menyala.		

No	Skenario	Tost Coso	Hasil yang	Hasil	Status
INU	Pengujian	Test Case	diharapkan	Pengujian	Status
8	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'Panduan	'Panduan	menampilkan	harapan	
	Pengoperasian'.	Pengoperasian'	teks panduan		
		pada menu	untuk		
		aplikasi.	mengoperasikan		
			aplikasi.		
9	Masuk ke menu	Mengklik	Aplikasi akan	Sesuai	Valid
	'Tentang	'Tentang	menampilkan	harapan	
	Aplikasi'.	Aplikasi' pada	teks tentang		
		menu aplikasi.	fungsi dari		
			aplikasi.		

5.4 PENGUJIAN ALAT

5.4.1 Pengujian Tegangan Sumber

Tahap pertama yang dilakukan adalah pengujian tegangan sumber, yang mana tegangan sumber di hasilkan dari adaptor. Hasil pengujian tegangan yang dihasilkan oleh adaptor dapat dilihat pada tabel 5.2.

Tabel 5.2 Pengujian Tegangan Sumber

Sumber Arus	Tegangan Input	Tegangan Output
Adaptor	5 V	5 V

5.4.2 Pengujian Tegangan NodeMCU

Setelah melakukan pengujian tegangan sumber, selanjutnya menguji tegangan NodeMCU.

Sumber	Tegangan Input	Tegangan Output
NodeMCU	5 V	5 V

Tabel 5.3 Pengujian Tegangan NodeMCU

5.4.3 Pengujian Sensor Suhu dan Kelembapan (DHT11)

Untuk pengujian sensor suhu dan kelembapan dilakukan pada saat waktu yang sudah di tentukan. Disini penulis melakukan pengujian sensor suhu dan kelembapan pada saat pagi, siang, dan sore hari. Berikut data yang dapat di tampilkan dari hasil pengujian sensor DHT11.

Waktu	Suhu Ruangan (Sensor Mendeteksi)	Status pada interface
07.44	25° C	Suhu Dingin
12.17	32° C	Suhu Panas
16.21	27° C	Suhu Normal

Tabel 5.4 Pengujian Sensor Suhu dan Kelembapan (DHT11)

5.4.4 Pengujian Relay & Kipas

Pengujian dilakukan pengiriman data dari aplikasi yang telah dibuat ke sistem rangkaian Arduino Nano. Hasil pengujian relay dan Motor DC dapat dilihat pada tabel 5.5 berikut.

Input Relay	Coil Relay	Kipas	
0	Terhubung ke NC	Mati	
1	Terhubung ke NO	Hidup	

Tabel 5.5 Pengujian Relay dan Kipas

5.5 ANALISIS SISTEM SECARA KESELURUHAN

Untuk mendeteksi apabila terjadi kesalahan setelah uji coba, maka perlu dilakukan analisa rangkaian secara keseluruhan. Dari seluruh proses yang telah dilakukan, baik pengujian perangkat keras maupun perangkat lunak, dapat dikatakan bahwa alat ini dapat berfungsi sebagaimana yang penulis inginkan. Proses pembacaan sensor suhu dan kelembapan (DHT11) pun tidak terjadi kesalahan pembacaan data, kipas dapat berputar sesuai program yang di buat penulis, dan pada layar monitor dapat menampilkan *interface* yang sesuai dengan kondisi sebenarnya untuk monitoring.

Pengujian ini dilakukan untuk menunjukan bahwa sistem monitoring pada rumah burung walet ini dapat bekerja sesuai dengan tujuan dari pembuatan. Pengujian ini dilakukan dengan cara sebagai berikut :

- Pada saat kondisi suhu ruangan burung walet dalam keadaan tidak stabil yaitu berada di bawah 26° dan diatas 29°C maka sensor suhu dan kelembapan yang bekerja membaca suhu ruangan tersebut akan mengirimkan sinyal berupa pemberitahuan ke sistem monitoring.
- Apabila ketika kondisi suhu ruangan burung walet dalam keadaan tidak stabil (30°C) maka aplikasi akan menampilkan *interface* dengan notifikasi berupa berapa suhu yang ada pada ruangan burung walet (30°C).
- 3. Dan begitu juga pada kondisi kelembapan pada rumah burung walet, aplikasi akan menampilkan *interface* dengan tampilan berapa kondisi kelembapan yang ada pada rumah burung walet tersebut.