BAB V

ANALISA DAN PENGUJIAN SISTEM

5.1 HASIL

Pada tahap ini penulis mengimplementasikan hasil rancangan yang telah dibuat pada tahap *design* menu aplikasi di HP android. Implementasi yang dimaksud adalah proses menterjemahkan rancangan menjadi *software*. Adapun hasil implementasi *output* tersebut adalah sebagai berikut :

5.1.1 Arduino IDE

Untuk mikrokontoler Arduino sinkron dengan banyak bahasa pemrograman seperti bahasa C. Dalam pembuatan alat ini penulis menggunakan Arduino IDE sebagai *software* untuk mendownload program kedalam arduino uno. Berikut pengujian *software* arduino IDE untuk pembuatan *listing* program serta mendownloadnya kedalam arduino. Untuk pembuatan *listing* program baru, dengan cara klik file *new*. Untuk lebih jelas lihat gambar 5.1.

Gambar 5.1 Menu Membuat Listing Program Baru

Setelah menyelesaikan pembuatan *listing* program untuk di download ke dalam arduino, lakukan compile terlebih dahulu untuk mengetahui terjadinya eror pada program sebelum di download. Lihat gambar 5.2.

Gambar 5.2 Halaman Proses Compile

Jika tidak ada terjadi eror pada program, selanjutnya melakukan proses upload program dengan cara mengklik tombol upload.

5.2 PENGUJIAN APLIKASI ANDROID

Pengujian aplikasi android dilakukan untuk mengetahui saat aplikasi terjadi eror ataupun terjadi masalah dalam koneksi *Bluetooth*. Berikut ini gambar pengujian aplikasi.

Gambar 5.3 Halaman Aplikasi Saat Pertama Dijalankan

Pada gambar 5.3 adalah bentuk aplikasi saat pertama kali dibuka dan diaplikasi tersebut terdapat tulisan "*Not Connected*" berwarna merah yang menandakan bahwa *Bluetooth* belum terkoneksi oleh kursi roda. Berikut ini gambar aplikasi saat terkoneksi oleh kursi roda.

Gambar 5.4 Halaman Aplikasi Saat Terhubung ke Kursi Roda

Pada gambar 5.4 dapat dilihat bahwa tulisan yang sebelumnya pada gambar 5.3 berwarna merah dan tulisannya "*Not Connected*" berubah menjadi warna hijau dan bertuliskan "*Connected*" yang artinya aplikasi android telah terhubung ke ke *Bluetooth* yang ada dikursi roda.

Gambar 5.5 Halaman Aplikasi Terjadi Error 1

Pada gambar 5.5 diatas merupakan gambar halaman aplikasi saat *Bluetooth* tidak terhubung tetapi *user* menyentuh panah yang ada diaplikasi kursi roda tersebut maka terjadi *error* dengan pemberitahuan "*Error 515: Not Connected to a Bluetooth Device*". Dengan *error* tersebut maka *User* harus mengklik tombol "Pilih Koneksi" terlebih dahulu kemudian cari nama *device Bluetooth* kursi roda.

Gambar 5.6 Halaman Aplikasi Terjadi Error 2

Pada gambar 5.6 terjadi *error* yang bertuliskan "*Error 516: Unable to Write: Broken Pipe*". *Error* tersebut terjadi saat aplikasi android terhubung ke *Bluetooth* kursi roda tapi tiba-tiba *Bluetooth* kursi roda mati atau rusak.

5.3 PENGUJIAN PERANGKAT KERAS (HARDWARE)

Pengujian perangkat keras ini dilakukan satu - persatu, dari beberapa rangkaian alat yang telah selesai di rangkai. Pengujian yang dilakukan meliputi pengujian jalur – jalur rangkaian dan gerak masing – masing dari rangkaian apakah sesuai yang dinginkan penulis.

5.3.1 Pengujian Saklar

Pengujian saklar dilakukan untuk mengetahui apakah tegangan dan arus Dapat tersambung keseluruh rangkaian dengan baik, pengujian saklar dapat dilihat pada table 5.1 :

NO	Kondisi saklar	Tegangan (Volt)	Keterangan
1	Terputus	0	Tidak Aktif
2	Terhubung	12	Aktif

Tabel 5.1 PengujianSaklar

Dari tabel 5.1 dapat diambil kesimpulan bahwa melalui saklar penulis dapat menyalurkan tegangan 12 V keseluruh rangkaian pada saat tersambung dan rangkaian mendapat tegangan 0 V pada saat saklar terputus.

5.3.2 Pengujian Bluetooth

Pada tahap ini pengujian *Bluetooth* berdasarkan jarak yang dikendalikan HP android sebelumnya *Bluetooth* dihubungkan ke arduino. Untuk jaraknya hanya tentukan pada pengujian *Bluetooth* dihubungkan dengan rangkaian arduino. Maka sebelum pengujian *Bluetooth* arduino terlebih dahulu melakukan koneksi terlebih dahulu ke android. Dapat dilihat pada table 5.2 :

Tabel 5.2 Pengujian Bluetooth

NO	Bluetooth	Jarak HP Android dengan	Bluetooth	KET.
	Arduino	Bluetooth Arduino	android	
1	Aktif	0 m sampai 5 m	Aktif	Terdeteksi

2	Aktif	5 m sampai 10 m	Aktif	Terdeteksi
3	Aktif	10 m sampai 15 m	Aktif	Terdeteksi
4	Aktif	15 m sampai selanjutnya	Aktif	Tidak
				Terdeteksi

5.3.3 Pengujian Motor DC

Pada tahap ini peneliti melakukan pengujian pada motor DC yang dirancang sedemikian rupa pada kursi roda, pengujian ini meliputi pergerakan arah motor DC maju, mundur, belok kanan, belok kiri, untuk lebih jelas dapat dilihat pada tabel pengujian 5.3 :

	Arus	Arus	MOTR DC 1		Motor	Motor DC 2		
No	Motor	Motor	Pin 9	Pin 10	Pin 11	Pin 12	Ket	
	DC 1	DC 2						
1	12v	12v	High	Low	High	Low	Maju	
2	12v	12v	Low	High	Low	High	Mundur	
3	<u>Ov</u>	12v	Low	Low	High	Low	Belok	
5	0V	120	LOW	LOW	Ingn	LUW	Kiri	
4	121	Ûv	High	Low	Low	low	Belok	
4	120	01	Ingn	LOW	LUW	10w	Kanan	
5	0v	0v	Low	Low	Low	Low	Berhenti	

Tabel 5.3 Pengujian Motor DC

Dari tabel diatas dapat dilihat bahwa motor dc yang diuji sesuai dengan keinginan yang diharapkan. Pada tabel dibawah ini merupakan pengujian beban pada kursi roda.

Tabel 5.4 Pengujian Beban Motor DC

No	Jenis Beban	Berat Beban	Keterangan
1	Karung Pasir	20 Kg	Jalan
2	Karung Pasir	40 Kg	Jalan

3	Karung Pasir	60 Kg	Jalan
4	Karung Pasir	70 Kg	Stop

Dari tabel 5.4 dilihat pengujian beban pada kursi roda dapat berjalan hingga beban \pm 60 Kg.

Setelah dilakukan pengujian motor DC maka selanjutnya adalah pengujian gerak kursi roda untuk maju secara sempurna atau gerak motor DC kanan dan kiri secara seimbang.

No	Gerak Lurus	Keterangan
1	Pengujian 1	Tidak Sempurna
2	Pengujian 2	Tidak Sempurna
3	Pengujian 3	Tidak Sempurna
4	Pengujian 4	Sempurna
5	Pengujian 5	Tidak Sempurna
6	Pengujian 6	Tidak Sempurna
7	Pengujian 7	Tidak Sempurna
8	Pengujian 8	Tidak Sempurna
9	Pengujian 9	Sempurna
10	Pengujian 10	Tidak Sempurna

Tabel 5.5 Pengujian Gerak Lurus Kursi Roda

Dari tabel 5.5 merupakan pengujian gerak lurus motor DC, dari 10 kali pengujian hanya mendapatkan 2 kali gerak kursi roda secara lurus sempurna, hal tersebut disebabkan karena rantai dari motor dc ke kursi roda baik kanan maupun kiri tidak seimbang.

5.3.4 Pengujian Joystick

Pada tahap ini pengujian *joystick* dilakukan agar dapat mengetahui mengetahui motor dc bekerja sesuai dengan yang diinginkan. Berikut ini table pengujian *Joystick*.

	Kondigi	Arduino				Arus	Arus	
No	joystick	Pin 9	Pin	Pin	Pin	Motor	Motor	Ket.
			10	11	12	DCI	DC 2	
1	Ke Depan	High	Low	High	Low	12v	12v	Maju
2	Ke Belakang	Low	High	Low	High	12v	12v	Mundur
3	Ke Kanan	High	Low	Low	Low	12v	0v	Belok Kanan
4	Ke Kiri	Low	Low	High	Low	0v	12v	Belok Kiri
5	Tengah	Low	Low	Low	Low	0v	0v	Berhenti

Tabel 5.6 Pengujian Joystick

Dari tabel diatas dapat dilihat bahwa joystick telah berfungsi seperti yang diinginkan.

5.3.5 Pengujian Keseluruhan

Tabel 5.'	7 Pengujian	Keseluruhan

	Android		Arduino				Arus	
No	Tombol	Pin 9	Pin	Pin	Pin	Motor	Motor	Ket.
			10	11	12	DC 1	DC 2	
1	Panah	High	Low	High	Low	121	121	Main
L	Atas	Ingn	LOW	Ingn	LUW	1 <i>L</i> v	121	Iviaju
2	Panah	Low	High	Low	High	121	121	Mundur
2	Bawah	LOW	Ingn	LOW	Ingn	1 <i>L</i> v	120	winnan
3	Panah	Uigh	Low	Low	Low	121	Ov	Belok
5	Kanan	Ingn	LOW	LOW	LOW	121	00	Kanan
4	Panah	Low	Low	High	Low	Ov	12v	Belok
-	Kiri	LUW	LUW	Ingn	LOW	00	120	Kiri

Dari tabel 5.7 dapat di jelaskan bahwa tombol panah atas pada aplikasi android untuk menggerakkan kursi roda bergerak maju, panah kiri pada android untuk menggerakkan kursi roda belok kiri, panah kanan pada aplikasi untuk menggerakkan kursi roda bergerak belok kanan, dan panah bawah pada aplikasi android untuk menggerakkan kursi roda bergerak mundur. Pada pengujian keseluruhan juga terdapat pengujian aki yang dimaksudkan agar mengetahui jarak tempuh pengguna saat menggunakan kursi roda dari aki terisi penuh sampai aki habis sekitar ± 1 Km.