BAB V

PENGUJIAN SISTEM

5.1 PENGUJIAN SISTEM

Perancangan *prototype* timbangan menggunakan sensor *Load Cell* terdiri dari perancangan *software* dan perancangan *hardware*. *Software* ini ditulis dalam Bahasa C dan akan dimasukan pada mikrokontroller Atmega16. *Software* yang digunakan adalah Codevision AVR. Untuk dapat menanamkan bahasa pemrograman C ini kita perlu *downloader* DB25 yang terhubung langsung ke mikrokontroller Atmega16. Kemudian diuji secara *hardware*.

Tahap-tahap implementasi adalah sebagai berikut:

- 1. Menginstal program Codevision AVR, serta sistem operasi yang digunakan adalah windows XP Propesional Service Pack 2.
- 2. Membuat program bahasa C pada aplikasi Codevisiom AVR.
- Menanamkan program yang telah dibuat ke dalam mikrokontroller Atmega16.
- 4. Menguji hardware yang telah ditanamkan program.

Untuk menyimpan hasil penimbangan yang telah dilakukan perlu disimpan ke dalam leptop menggunakan MYSQL dan akan di olah dengan program Visual Basic 2008.

Tahap-tahap implementasi adalah sebagai berikut:

- Menginstal program Visual Basic 2008 yang akan di instal di leptop yang menggunakan sistem operasi windows 7.
- 2. Membuat program pada aplikasi Visual Basic 2008.
- Menguji program yang telah dibuat adakah kesalahan atau tidak dalam menjalankannya.

Pengujian sistem dilakukan secara keseluruhan baik itu pengujian *software* dan pengujian *hardware* yang dilakukan secara terpisah. Pengujian secara terpisah terdiri dari pengujian rangkaian sensor *Load Cell*, rangkaian LCD, dan rangkaian komunikasi Serial dan akan dilakukan pengujian secara keseluruhan.

5.2 PENGUJIAN PERANGKAT LUNAK

Hal pertama yang dilakukan dalam pengujian perangkat lunak adalah menentukan aplikasi yang akan digunakan untuk mengisi program pada mikrokontroler Atmega16.

5.2.1 CodeVisionAVR

Untuk mikrokontroler ATmega16 sinkron dengan banyak bahasa pemrograman seperti *Assembler, CodeVision AVR*, bahasa C, *BASCOM AVR* dan lainnya. Dalam pembuatan alat ini penulis menggunakan CodeVision AVR, sebab CodeVision AVR sangat kompatibel dengan downloader yang penulis gunakan.

Untuk pengujian software berikutnya yaitu pembuatan *listing program* dengan cara membuka Aplikasi Codevision AVR yang telah terinstal di PC dengan meng klik dua kali pada icon Codevision AVR maka akan tampil menu seperti pada gambar 5.1:

Gambar 5.1 Aplikasi Codevision AVR

Setelah program codevision AVR terbuka maka dimulailah pembuatan atau pengetikan *listing program* setelah pengetikan selesai maka tahap berikutnya adalah mengkompile program yang dibuat atau menguji kebenaran *Coding-coding* program yang kita buat dangan cara menekan F9 dan apabila program yang kita buat salah maka akan terdapat petunjuk dimana terjadi kesalahan tersebut, dan apabila program yang kita buat benar maka program langsung *mengcompile* program tersebut maka akan tampil perintah seperti pada gambar 5.2:

Gambar 5.2 Compiler Codevision AVR

Setelah tampil menu seperti gambar 5.2 Untuk menginputkan program kemikrokontroler maka *click* tombol *Program* maka dengan otomatis aplikasi Codevision akan mendeteksi mikrokontroler yang kita gunakan, jika mikrokontroler yang kita gunakan tidak terdeteksi maka terdapat kesalahan pada pada rangkaian *downloader*.

5.2.2 Visual Basic.Net 2008

Pengujian pada perangkat lunak (*software*) Visual Basic.Net 2008 ini terdiri dari beberapa bagian. Adapun tahap pengujian yang telah penulis lakukan adalah sebagai berikut :

1. Pengujian Modul Login

Pada tahap ini, dilakukan pengujian pada modul login untuk mengetahui apakah proses login berjalan dengan baik atau tidak. Hasil pengujian pada modul login dapat dilihat pada Tabel 5.1.

Modul yang diuji	Prosedur Pengujian	Masukan	Keluaran yang diharapkan	Hasil yang di dapat	Kesimpulan
Login (berhasil)	 Buka Halaman login Masukan username dan password yang benar Klik tombol Login 	Username, password, dan klik tombol Login	Pengguna masuk ke dalam halaman menu utama	Pengguna masuk ke dalam halaman menu utama	Baik
Login (gagal)	 Buka halaman login Masukkan username dan password yang salah Klik tombol Login 	Username, password, dan klik tombol Login	Tampilkan pesan error bahwa username dan password yang dimasukkan salah	Tampilkan pesan error bahwa username dan password yang dimasukkan salah	Baik

Tabel 5.1 Pengujian Modul Login

2. Pengujian Modul Komunikasi Serial

Pada tahap ini, dilakukan pengujian pada modul komunikasi serial untuk mengetahui apakah alat terhubung ke sistem berjalan dengan baik atau tidak. Hasil pengujian pada modul komunikasi serial dapat dilihat pada Tabel 5.2.

Modul yang	Prosedur	Masukan	Keluaran	Hasil	Kesimpulan
diuji	Pengujian		yang di	yang	_
-			harapkan	didapat	
Komunikasi	Hubungkan	Masuk ke	Koneksi	Koneksi	Baik
serial	port serial	tampilan	terhubung	terhubung	
	tersambung	form			
	pada alat	menu			
	dengan	utama,			
	port yang	pilih			
	ada pada	menu			
	komputer	transaksi			
	atau laptop	lalu pilih			
		port dan			
		baudrate			
		yang			
		digunakan			
		dan klik			
		tombol			
		open			

Tabel 5.2 Pengujian Modul Komunikasi Serial

5.3 PENGUJIAN PERANGKAT KERAS (HARDWARE)

Pengujian perangkat keras (*Hardware*) ini dilakukan secara satu-persatu dari beberapa rangkaian alat yang yang telah selesai dirangakai. Pengujian perangkat keras (*Hardware*) menggunakan alat *multimeter*.

5.3.1 Pengujian Tegangan

Load Cell

Pengujian dilakukan dengan menggunakan voltmeter analog. Sistem yang diracang membutuhkan sumber tagangan sebesar 0 - 5 VDC dan arus sebsar \pm 50 mA pada saat mengirim pesan dan mengakses perintah. Hasil pengukuran dapat dilihat pada table 5.3.

Node	Tegangan Seharusnya (V)	Tegangan Hasil Pengukuran (V)
MAX232	5	4.9
HX711	5	4.9
LCD 16x2	5	4.9

 Tabel 5.3 Hasil Pengukuran Tegangan

4.9

5.3.2 Pengujian Rangkaian Sensor Load Cell

5

Pengujian rangkaian sensor *load Cell* dilakukan untuk mengetahui tegangan output yang dihasilkan dari tegangan input yang diterima oleh sensor. Untuk objek beban yang dilakukan untuk pengujian kami menggunakan angkat beban (barbel).

Tabel 5.	4 Pengujia	n Sensor	Load	Cell
----------	------------	----------	------	------

NO	Berat beban (Kg)	Tegangan sebelum diberi beban (V)	Tegangan setalah (V)
1	0	0	0
2	2	0	2,5
3	2,5	0	4,7
4	+2	0	4,9

5.3.3 Pengujian Rangkaian LCD

LCD dirangkai untuk menampilkan *uotput* dari sensor *load cell*. Sebelum melakukan pengujian LCD harus diprogram terlebih dahulu, sehingga dapat

menampilkan sebuah karakter. Pengujian rangkaian LCD dapat dilihat pada tabel 5.5

INPUT	OUTPUT
Freddi	Freddi
8030120031	8030120031

Tabel 5.5 Pengujian LCD

Dalam keadaan "ON" LCD secara langsung menampilkan karaketer dalam table 5.5. Berdasarkan hasil pengujian, LCD dapat menampilkan karaketer dengan baik sesuai degan perencanaan.

5.3.4 Pengujian Rangkaian Komunikasi Serial

Pengukian rangkaian komunikasi serial ini dilakukan dengan mengirimkan data dari mikrokontroler ke komputer, melalui rangkaian komunikasi serial. Pengujian dilakukan dengan mengirimkan sejumlah data oleh mikrokontroler ke komputer untuk mengetahui komunikasi antara mikrokontroler dan komputer. Apabila data telah terkirim dan diterima dengan baik, data tersebut akan tampil diprogram. Hasil pengujian komunikasi serial dapat dilihat pada gambar 5.6

Tabel 5.6 Pengujian Pengiriman Data Melalui Komunikasi Serial

No	Data yang dikirim oleh mikrokontroler	Data yang ditampilkan program
1	А	A
2	8030120020	8030120020

Dari tabel5.6 dapat di ambil kesimpulan bahwa data yang dikirim melalui mikrokontroller dapat di tampilkan pada program sesuai dengan apa yang diinginkan.

5.4 PENGUJIAN SECARA KESELURUHAN

Pengujian secara keseluruhan dilakukan untuk mengetahui apakah alat yang di rancang telah terpasang dan saling terhubung satu sama lainnya dan dapat bekerja baik sesuai dengan yang diinginkan. Hasil pengujian keseluruhan dapat dilihat pada table 5.7

	INPUT	OUTPUT	
NO	Berat Sensor (kg)	LCD	Database VB
1	0	-0,25	-0,25
2	1	0,756	0,756
3	1,5	1,3	1,3
4	+2	1,7	1,7

Tabel 5.7 Pengujian Keseluruhan

Dari tabel 5.7 dapat diambil kesimpulan bahwa rangkaian keseluruhan dapat dikatakan bekerja dengan baik apabila hasilnya sama atau sesuai dengan apa yang ada ditabel.

5.5 PENGUJIAN *PROTOTYPE* TIMBANGAN DIGITAL BERBASIS MIKROKONTROLER ATMEGA 16 UNTUK PENDATAAN PANEN IKAN

Tujuan pengujian ini dilakukan untuk menunjukan bahwa *prototype* ini dapat bekerja sesuai dengan tujuan pembuatnya. Pengujian dilakukan sebagai berikut:

- Sensor diletakan dibawah penyangga timbangan yang telah dibentuk sebelumnya. Tujuannya adalah agar objek yang akan ditimbang terletak di atas sensor agar mudah untuk ditimbang.
- 2. Buka aplikasi transaksi penjualan ikan, pilih menu transaksi dan klik open.
- 3. Objek yang akan ditimbang diletakan pada wadah yang berfungsi untuk meletakan objek yang akan ditimbang.
- 4. Setelah objek di letakkan pada tempatnya maka secara otomatis data transaksi akan menampilkan hasil begitu juga dengan LCD 16 x 2 akan mendapatkan hasil yang sama.