## BAB V

# IMPLEMENTASI DAN PENGUJIAN SISTEM

### 5.1 HASIL IMPLEMENTASI

Pada tahap ini penulis mengimplementasikan hasil rancangan yang telah dibuat. Adapun hasil implementasi dari penelitian ini adalah sebagai berikut :



Gambar 5.1 Prototype Sistem Parkir

Gambar diatas merupakan *prototype* sistem parkir yang telah dirancang penulis. Terlihat terdapat dua buah portal utama di pintu masuk dan keluar, dua buah servo dan dua buah tombol input, serta tambahan sensor *ultrasonik* HCSR-04 didepan portal. Lalu ada sepuluh buah plot parkir tersedia yang telah diletakkan masing-masing satu buah sensor *unltrasonik* HC-SR04 sebagai input untuk dikirimkan ke mikrokontroler.

Pada gambar 5.2 adalah cara kerja sistem yang pertama yaitu mobil datang dan bersiap untuk memasuki lahan parkir. Dalam kondisi portal masih tertutup, pengendara harus menekan tombol input yang terletak di depan pos masuk untuk bisa membuka portal dan *interface* denah lokasi plot parkir akan muncul di layar monitor.



Gambar 5.2 Keadaan Portal Tertutup

Selanjutnya, pada gambar 5.3 keadaan portal sudah terbuka dan mobil bisa memasuki lahan parkir. Tidak jauh dari letak portal terdapat sensor *ulrasonik* HC-SR04. Apabila mobil lewat menghalangi sensor *ulrasonik* HC-SR04 maka portal akan tertutup kembali. Dan pengendara yang dibelakangnya bisa memulai ulang proses sistem parkir dari awal.



Gambar 5.3 Keadaan Portal Terbuka

Setelah mobil masuk, pengendara dapat memarkirkan mobilnya pada pilihan plot yang tersedia sesuai dengan *interface*. Disaat telah masuk ke plot parkir yang dipilih, maka sensor *ulrasonik* HCSR-04 yang terhalang oleh mobil yang dimana itu merupakan input untuk mendeteksi keberadaan objek. Oleh karenanya pada *interface*, nomor plot akan terdeteksi dari yang tadi berwarna Hijau (kosong) akan menjadi warna Merah (terisi).

Adapun kondisi mobil yang telah masuk ke plot parkir seperti pada gambar 5.4 berikut :



Gambar 5.4 Keadaan Mobil Pada Plot Parkir

Pada gambar 5.5 merupakan kondisi mobil akan meninggalkan parkiran. Disaat mobil telah keluar dari plot, maka sensor *ulrasonik* HCRF-04 kembali terbuka. Oleh karenanya pada *interface* nomor plot terdeteksi menjadi warna hijau semula. Untuk keluar dari tempat parkir, pengendara cukup menekan tombol didepan pos untuk membuka portal keluar. Setelah portal terbuka dan mobil melaju keluar, sama seperti di pintu masuk, di pintu keluar juga diletakkan sensor *ulrasonik* HCSR-04 jika mobil telah melewati sensor maka portal akan tertutup kembali.



Gambar 5.5 Kondisi Mobil Akan Meninggalkan Parkiran

# 5.2 PENGUJIAN PERANGKAT LUNAK

Hal pertama dilakukan dalam pengujian perangkat lunak adalah menentukan aplikasi (*software*) yang akan digunakan untuk mengisi program pada mikrokontroler ATMega 16.

## 5.2.1 CodeVisionAVR

Untuk mikrokontoler ATMega 16 sinkron dengan banyak bahasa pemrograman seperti bahasa pemrograman *Assembler*, CodeVision AVR, bahasa C, Bascom AVR dan lainnya. Dalam pembuatan alat ini penulis menggunakan CodeVision AVR, sebab CodeVision AVR sangat kompetibel dengan *downloader* yang penulis gunakan. CodeVisionAVR merupakan sebuah *cross-compiler* C, *Integrated Development Environtment* (IDE), dan *Automatic Program Generator* yang didesain untuk mikrokontroler buatan Atmel seri AVR. CodeVisionAVR dapat dijalankan pada sistem operasi Windows 98, Me, dan Windows XP. Namun penulis menggunakan sistem operasi Windows 7. Cross-compiler C mampu menerjemahkan hampir semua perintah dari bahasa ANSI C, sejauh yang diijinkan oleh arsitektur dari AVR, dengan tambahan beberapa fitur untuk mengambil kelebihan khusus dari arsitektur AVR dan kebutuhan pada sistem *embedded*.

Untuk pengujian yaitu pembuatan *listing program* baru, tekan file kemudian pilih *New Project,* lalu *Checklist Project* dan OK.



Gambar 5.6 Menu Membuat Program Baru

Maka selanjutnya akan muncul kembali jendela konfirmasi Project, pilih

YES :



Gambar 5.7 Konfirmasi Project

Kemudian akan muncul kembali jendela *Code Wizard AVR*, pada bagian ini tentukan *Chip* yang akan digunakan. karena *Chip* yang akan digunakan Atmega16 maka *checklist* pilihan yang pertama yaitu *AT90*, *Attiny*, *Atmega*, *FPSLIC* lalu klik OK.



Gambar 5.8 Code Wizard AVR

Berikutnya muncul jendela *Save C Compiler Source File* yaitu jendela untuk menyimpan file, pilih dimana file *project* akan kita simpan. Menyimpan file pada *Codevision AVR* terdiri dari tiga kali penyimpanan yaitu : *Save* yang pertama berupa *file* ekstensi .*C*, yang kedua *Save file* ekstensi .*prj*, dan yang ketiga *Save File* ekstensi .*cwp*,

| Save in:      | 📙 Program Pa  | rkiran            | -             | G 🤌 📂 🖽 -     |        |
|---------------|---------------|-------------------|---------------|---------------|--------|
| (Ba           | Name          | ~                 |               | Date modified | Туре   |
| Recent Places |               | No iter           | ns match your | search.       |        |
|               | •             | m                 |               |               |        |
| Network       | File name:    | Santi             |               | •             | Save   |
|               | Save as type: | C Compiler source | file (* c)    | •             | Cancel |

untuk lebih jelasnya bisa dilihat pada gambar 5.10, 5.11, dan 5.12 berikut :

Gambar 5.9 Save Pertama file ekstensi .C

*File* ekstensi.c menyimpan data agar *Codevision AVR* diprogram menggunakan bahasa C.

| Save in:      | 🎉 Program Par | kiran                 | •   | 🎯 🤌 📂 🛄 🗸     |        |
|---------------|---------------|-----------------------|-----|---------------|--------|
| (Az)          | Name          | *                     |     | Date modified | Туре   |
| Recent Places |               | No items match y      | our | search.       |        |
| Desktop       |               |                       |     |               |        |
| Libraries     |               |                       |     |               |        |
|               |               |                       |     |               |        |
| Computer      |               |                       |     |               |        |
| Network       | •             |                       |     |               |        |
|               | File name:    | Santi                 |     | - (           | Save   |
|               | Save as type: | Project files (* pri) | _   | •             | Cancel |

Gambar 5.10 Save Kedua File Ekstensi .prj

*File* ekstensi.*prj* digunakan untuk menyimpan data proyek dan pengaturan dan dapat mencakup rujukan pada berkas lainnya yang digunakan oleh proyek.



Gambar 5.11 Save Ke Tiga File Ekstensi .cwp

*File* ekstensi.cwp dipilih untuk mempermudahkan penulisan *source* code.

Setelah tahapan *Save File*, yang akan dilakukan selanjutnya adalah mesuk ke dalam jendela *Code Wizard AVR*. Di jendela ini terdiri dari beberapa *Tab* pilihan yaitu terdiri dari :

1. Tab Chip

Yaitu *Tab* yang menentukan pilihan *Chip* yang digunakan Atmega16, *Clock* yang digunakan 12.000.000 *MHz* 



Gambar 5.12 Tab Chip

## 2. Tab Ports

Port A : Pada Tab *Ports* akan dipilih I/O Port mana saja yang akan digunakan yaitu Port A : Pin A.0, Pin A.2, Pin A.4, dan Pin A.6 *pulup/output value* dirubah menjadi out.



Gambar 5.13 Menentukan Pin Untuk Sensor Ultrasonik HC-SR04

Port B : Pada Tab *Ports* akan dipilih I/O Port mana saja yang akan digunakan yaitu Port A : Pin A.0 dan Pin A.2*pulup/output value* dirubah menjadi out.



Gambar 5.14 Menentukan Pin Untuk Sensor Ultrasonik HC-SR04

Port C : Pada Tab *Ports* akan dipilih I/O Port mana saja yang akan digunakan yaitu Port C : Pin C.0, Pin C.2, Pin C.4, dan Pin C.6 *pulup/output value* dirubah menjadi out.



Gambar 5.15 Menentukan Pin Untuk Sensor Ultrasonik HC-SR04

Port D : Pada *tab* port D untuk menentukan letak motor servo dan tombol inputan. Pin yang digunakan yaitu pin D.2 dan D.3 untuk menggerakan servo. Lalu pin D.5 dan D.6 sebagai inputan dari tombol parkir.

| le <u>P</u> rogram <u>E</u> dit <u>H</u> elp                                                                                                                                                                                                |                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|                                                                                                                                                                                                                                             |                 |  |
| JSART Analog Comparator ADC SPI<br>I2C 1 Wire TWI (I2C)<br>Although ICD                                                                                                                                                                     | Program Preview |  |
| Bit-Banged Project Information<br>Chip Ports External IRQ Timers                                                                                                                                                                            |                 |  |
| Port A         Port B         Port C         Port D           Data Direction         Pullup/Output Value         Bit 0         III         Bit 0           Bit 0         In         I         Bit 0         Bit 1         III         Bit 1 |                 |  |
| Bit 2 In T Bit 2<br>Bit 3 In T Bit 3<br>Bit 4 One D Bit 4                                                                                                                                                                                   |                 |  |
| Bit 5 In Bit 5<br>Bit 6 Out Bit 6                                                                                                                                                                                                           |                 |  |
|                                                                                                                                                                                                                                             |                 |  |
|                                                                                                                                                                                                                                             |                 |  |
|                                                                                                                                                                                                                                             |                 |  |
|                                                                                                                                                                                                                                             |                 |  |
|                                                                                                                                                                                                                                             |                 |  |
|                                                                                                                                                                                                                                             |                 |  |

Gambar 5.16 Menentukan Pin Untuk Motor Servo Dan Tombol

#### 3. Tab USART

USART (Universal Syncrhronous and Asyncrhronous Serial Receiver and Transmitter) merupakan komunikasi yang memiliki fleksibilitas tinggi, yang dapat digunakan untuk melakukan transfer data baik antar mikrokontroler maupun dengan modul-modul eksternal termasuk PC yang memiliki fitur UART. Tab USART digunakan untuk mengaktifkan transmitter, receiver, baud rate, dan communication parameters.

| 12C         | 1                                                                              | Wire                                   | TW                           | I (I2C)               |
|-------------|--------------------------------------------------------------------------------|----------------------------------------|------------------------------|-----------------------|
| Alpha       | inumeric LC                                                                    | D                                      | Graphic                      | c LCD                 |
| Bit-Ba      | anged                                                                          | Proje                                  | et Inform                    | nation                |
| Chip        | Ports                                                                          | Externa                                | IIRQ                         | Timers                |
| USART       | Analog C                                                                       | omparator                              | ADC                          | SPI                   |
|             | 7 Receiver                                                                     | er 🔲                                   | Rx Interr                    | rupt                  |
|             | 7 Receiver<br>7 Transmit                                                       | er 🔲                                   | Rx Interr                    | upt                   |
| B           | 7 Receiver 7 Transmitt aud Rate:                                               | er 📄 1<br>960                          | Rx Interr<br>Fx Interr       | rupt<br>upt           |
| B           | Receiver     Transmit     aud Rate:     aud Rate E                             | er 📄 1<br>960                          | Rx Interr<br>Fx Interr       | rupt<br>upt<br>• 🔲 xi |
| B           | Receiver<br>Transmith<br>aud Rate:<br>aud Rate E<br>ommunicat                  | er 1                                   | Rx Interr<br>Fx Interr<br>00 | rupt<br>upt           |
| B<br>B<br>C | Receiver     Transmit     aud Rate:     aud Rate E     ommunicat     Constants | er<br>960<br>Frror: 0.2%<br>ion Parame | Rx Interr<br>Fx Interr<br>00 | rupt<br>• 🗆 x         |

Gambar 5.17 Tab USART

*Transmitter* data (TxD) adalah sinyal *actual* yang dikirimkan dari satu perangkat ke perangkat lain.

*Received* data (RxD) adalah sinyal yang diterima dari perangkat lain, pada perangkat lain tersebut sinyal didapat dari sinyal TxD (*Transmitted* data).

*Baud Rate* merupakan kecepatan pengiriman data antara perangkat dengan komputer. 1 *baud* merupakan 1 buah karakter yang dikirim. Besaran baud

rate ini ada beberapa: 110, 1200 2400, 9600 19200, 38400, 57600, 115200. Satuan *baud rate* adalah bps, yang berarti *baud per second*. Pada tab USART ini *baud rate* yang digunakan adalah 9600 bps, berarti data yang dikirim memiliki laju 9600 karakter per detik.

*Communication parameters* digunakan untuk berkomunikasi antara perangkat/instrumen dengan komputer. Pengaturan komunikasi yang digunakan adalah 8 Data, 1 *stop, no parity* yang berarti jumlah data bit yang dikirim sebanyak 8, tanda bit yang dikirim sudah selesai, dan tanpa ada bit yang *error*.

Kemudian setelah menentukan *Chip, Port I/O, ADC*, akan muncul jendela *coding* program yang berupa *coding default*. Disini mulai dilakukan pengetikan *listing program*.



Gambar 5.18 Listing Program

Setelah *listing rogram* selsai dibuat, kemudian tekan tombol *Ctrl+F9* atau klik *Program* pilih *Build All* lalu OK. Tahapan berikutnya adalah memasukan program ke dalam mikrokontroler, *USB ISP Programmer* ini adalah *programmer tool* untuk mengunggah kode program terkompilasi (berkas dalam format *Intel* 

*HEX*) ke mikrokontroler Atmel yang mendukung ISP (*In-System Programming*). Alat ini dapat digunakan dari Windows 7, dikenali sebagai USB HID (*Human Interface Device*) dengan *Vendor ID* (*VID*) 0x03EB dan Product ID (PID) 0xC8B4. Untuk menggunakan alat ini penulis menggunakan piranti lunak yang mendukung USB ISP, seperti ProgISP Programmer. Untuk lebih jelasnya perhatikan gambar 5.19 berikut.



Gambar 5.19 PROGISP (Ver 1.72)

Pada gambar 5.19 adalah gambar tampilan awal *progisp* disini penulis menggunakan ver 1.72. Langkah brikutnya untuk memasukan program ke dalam mikrokontroler yaitu merubah *Fuse & Lock* pada *progisp*, untuk lebih jelasnya perhatikan gambar 5.20.

| ROGRAM BUFFER | CHECKIO CONFIG Readme |                                 |              |
|---------------|-----------------------|---------------------------------|--------------|
| Select Chip   | Program State         | Options                         | ⇒ File       |
| ATmega 16     | ✓ ● PRG USB           | Image Data                      | Load Flash   |
| D: 1E:94:03   | RD SN ISP PRG         | PowerOn 3.3V Skip Blank Written | Load Eepron  |
| Programming   |                       |                                 | Open Projec  |
| High          | Changed Down          | Data Reload                     | Save Flash   |
|               | Verify Signature      | Verify FLASH                    | Save Eepron  |
| 4             | Chip Erase            | Verify EEPROM                   | Save project |
|               | Prewritten Fuse 0x9   | 99E1 V Program Fuse 0x99E1      | >> Command   |
| a a           | Blank Check           | Lock Chip 0XFF                  |              |
|               | V Program FLASH       | Enabled XTAL                    |              |
|               | Program EEPROM        |                                 |              |
|               |                       |                                 |              |
| -             | Erase                 | 78 Aug                          |              |
| Low           | Flash:2268/16384      | Eprom:0/512                     |              |

Gambar 5.20 Setting Fuse & Lock ProgISP

Selanjutnya setting Fuse & Lock seperti yang terlihat pada gambar 5.21

berikut :

| ow Fuse Bits     | High Fuse Bits        | Extend Fuse Bits | Lock Bits | Calibration |
|------------------|-----------------------|------------------|-----------|-------------|
| BODLEVEL         | 1 OCDEN               | 0 NC             | 1 NC      | 1.0 MHz 00  |
| 1 BODEN          | JTAGEN                | 0 NC             | 1 NC      | 1.01112 00  |
| I SUT1           | II SPIEN              | 0 NC             | ELB 12    | 2.0 MHz 00  |
| I SUTO           | 1 СКОРТ               | 0 NC             | 1 BLB11   | 4.0 MHz 00  |
| CKSEL3           | 1 EESAVE              | 0 NC             | 1 BLB02   | 8.0 MHz 00  |
| CKSEL2           | BOOTSZ1               | 0 NC             | 1 BLB01   |             |
| CKSEL1           | BOOTSZ0               | O NC             | LB2       |             |
| CKSEL0           | <b>BOOTRST</b>        | O NC             | 🔟 LB1     | Read        |
| ConfigBit Naviga | ition<br>HighValue DF | ExtValue 0       | Loc       | k Value FF  |

Gambar 5.21 Fuse & Lock ProgISP

Setelah setting fuse & lock progISP kemudian klik Load Flash pilih

program yang akan dimasukan kedalam mikrokontroler lalu klik OK.

| POGRAM DI MEED  | CHECKTO    | CONTR   Beadma |                                |             |
|-----------------|------------|----------------|--------------------------------|-------------|
| Select Chip     | - <b>-</b> | Program State  | Options                        | File        |
| D: 1E : 94 : 03 | RD SN      | ISP PRG        | PowerOn 3.3V Skip Blank writte | Load Eepror |
| Programming     |            |                |                                | Open Projec |
|                 | Chan       | ged Down       | V Data Reload                  | Save Flash  |
|                 | Verify     | Signature      | Verify FLASH                   | Save Eepror |
|                 | Chip E     | Irase          | Verify EEPROM                  | Save protec |
|                 | Prewr      | itten Fuse 0x9 | E1 V Program Fuse 0x99E1       | >> Command  |
| 2.2             | 🔄 Blank    | Check          | Lock Chip OXFF                 |             |
|                 | Progr      | am FLASH       | Enabled XTAL                   |             |
|                 | Progr      | am EEPROM      |                                |             |
|                 |            | Frase          | Auto                           |             |
| - Low           | Flash:2    | 268/16384      | Eprom:0/512                    |             |
|                 |            | www.zhif       | ngsoft.com                     |             |

Gambar 5.22 Load Flash

Setelah itu baru kemudian klik Auto, selanjutnya perhatikan gambar 5.23

berikut :

| BUFFER        | CHECKIO CONFIG Readme |                                 |             |
|---------------|-----------------------|---------------------------------|-------------|
| Select Chip   | Program State         | Options                         | ⊗ File      |
| ATmega 16     | - PRG USB             | Image Data                      | Load Flash  |
| ID: 1E: 94:03 | RD SN SN PRG          | PowerOn 3.3V Skip Blank Written | Load Eepror |
| Programming   |                       |                                 | Open Proje  |
| High          | Changed Down          | V Data Reload                   | Save Flash  |
|               | Verify Signature      | Verify FLASH                    | Save Eepro  |
| (m) (m)       | Chip Erase            | Verify EEPROM                   | Save projec |
|               | Prewritten Fuse       | x99E1 Vrogram Fuse 0x99E1       | >> Command  |
|               | Blank Check           | Lock Chip OXFF                  |             |
|               | Program FLASH         | Enabled XTAL                    |             |
|               | Program EEPROM        |                                 |             |
|               | -                     |                                 |             |
| - Low         | Erase                 | JA AULO                         | <u> </u>    |
| LOW           | Flash: 2268716384     | Eprom.07512                     | -1          |
|               | www.2111              | rengsore.com                    | _           |

Gambar 5.23 Auto

Jika dibagian keterangan kiri bawah terdapat pesan *successfully done* itu tandanya program yang kita buat telah berhasil dimasukan kedalam mikrokontroler.

## 5.2.2 Visual Basic.Net 2008

Pengujian pada perangkat lunak (*software*) Visual Basic.Net 2008 ini terdiri atas 4 (empat) bagian utama yaitu :

1. Form Menu Utama

Form ini merupakan halaman utama saat kita menjalankan aplikasi sistem informasi parkir mobil.

Adapun bentuk tampilan dari menu utama dapat dilihat pada gambar 5.24 berikut :



## Gambar 5.24 Tampilan Form Menu Utama

2. Form Komunikasi Serial

Pada *form* ini berisikan cara mengkoneksikan port serial, supaya dapat terhubung pada aplikasi sistem informasi parkir mobil.

Adapun tampilan dari *form* komunikasi *serial* dapat dilihat pada gambar 5.25 berikut :

| Baudrate       |      |  |
|----------------|------|--|
|                |      |  |
|                |      |  |
| erial Com Port |      |  |
|                |      |  |
|                | <br> |  |

Gambar 5.25 Tampilan Form Komunikasi Serial

3. Form Aplikasi Parkir

*Form* ini merupakan tampilan awal untuk kita memulai pengujian aplikasi pada sistem parkir. Dimulai dengan kita mengkoneksikan serial, lalu membuka menu tampilan sehingga tampil di layar monitor, maupun menu keluar untuk mengakhiri proses sistem parkir.Adapun *form* aplikasi parkir dapat dilihat pada gambar 5.26 seperti berikut :



Gambar 5.26 Form aplikasi parkir

Selain pengujian *software*, penulis juga melakukan pengujian dari aplikasi yang dibuat. Adapun beberapa tahap pengujian yang telah penulis lakukan adalah sebagai berikut :

1. Pengujian Modul Komunikasi Serial

Pada tahap ini dilakukan pengecekan komunikasi serial untuk mengetahui apakah *device* sudah terkoneksi dengan baik atau belum. Hasil pengujian pada modul ini dapat dilihat pada table 5.1 :

| Modul yang                    | Procedur                                                                                                                                            |                                                                                                                                                                                                                                            | Keluaran                                    | Hasil                                    |            |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------|
| dinii                         | nenguijan                                                                                                                                           | Masukan                                                                                                                                                                                                                                    | yang                                        | yang                                     | Kesimpulan |
| aluji                         | pengujian                                                                                                                                           |                                                                                                                                                                                                                                            | diharapkan                                  | didapat                                  |            |
| diuji<br>Komunikasi<br>serial | <ul> <li>pengujian</li> <li>Hubungkan<br/>port serial<br/>yang<br/>tersambung<br/>pada alat<br/>dengan port<br/>yang ada<br/>pada laptop</li> </ul> | <ul> <li>Masukan</li> <li>Masuk ke<br/>tampilan<br/>form<br/>menu<br/>utama lalu<br/>klik<br/>tombol<br/>komunikas<br/>i serial</li> <li>Pilih nama<br/>port,<br/>sesuaikan<br/>yang<br/>sudah<br/>diatur<br/>dalam<br/>program</li> </ul> | yang<br>diharapkan<br>- Koneksi<br>berhasil | yang<br>didapat<br>- Koneksi<br>berhasil | Baik       |
|                               |                                                                                                                                                     | - Pilih<br>baudrate                                                                                                                                                                                                                        |                                             |                                          |            |
|                               |                                                                                                                                                     | - Klik<br>tombol                                                                                                                                                                                                                           |                                             |                                          |            |
|                               |                                                                                                                                                     | connect                                                                                                                                                                                                                                    |                                             |                                          |            |

Tabel 5.1 Pengujian Modul Komunikasi Serial

2. Pengujian Modul Form Tampilan Interface

Pada tahap ini dilakukan pengujian pada modul melihat tampilan untuk mengetahui apakah nomor pada *interface* telah berjalan dengan baik. Hasil pengujian pada modul ini penulis sajikan pada tabel 5.2

Modul Prosedur Keluaran yang Hasil yang yang Masukan Kesimpulan pengujian diharapkan didapat diuji Menampilkan Baik Melihat Jalankan Mengklik Dapat \_ -form tombol form melihat program langsung tampilan tampilan tampilan dengan ketersedia (berhasil) menekan yang ada dengan benar tombol F5 pada lahan an Hubungka form parkir \_ n terlebih pada form menu dahulu tampilan utama komunikas interface i serial Memilih port yang digunakan dalam pengujian Memilih baudrate Mengklik tombol connect

Tabel 5.2 Pengujian Modul Form Tampilan

### 5.3 PENGUJIAN ALAT

#### 5.3.1 Pengujian Tegangan Sumber

Tahap pertama yang dilakukan adalah pengecekan catu daya. *Battery* yang digunakan adalah memiliki keluaran sebesar 5 V.

Hasil pengujian tegangan yang dihasilkan oleh *battery* dapat dilihat pada tabel 5.3.

**Tabel 5.3 Pengujian Tegangan Sumber** 

| Sumber Arus | Tegangan <i>Input</i> | Tegangan <i>Output</i> |
|-------------|-----------------------|------------------------|
| Battery     | 5 V                   | 5 V                    |

#### 5.3.2 Pengujian Tegangan AT-Mega16

Rangkaian ini merupakan otak dari seluruh rangkaian. Semua rangkaian yang ada dikendalikan *input output*-nya oleh rangkaian mikrokontroler ini. Proses pengujian rangkaian ini adalah dengan menghubungkan setiap *port* dengan beberapa LED. Adapun hasil dari pengujian tegangan AT Mega16 ini dapat dilihat pada tabel 5.4.

Tabel 5.4 Pengujian Tegangan ATMega16

| Sumber     | Tegangan Input | Tegangan Output |
|------------|----------------|-----------------|
| AT Mega 16 | 5 V            | 4.8 V           |

#### 5.3.3 Pengujian Downloader

Tahap pertama dilakukan *testing downloader*, yang pertama dilakukan adalah pengecekan rangkaian *regulator* ke mikrokontroler apakah sudah berukuran 5 V DC, sebab tegangan yang baik untuk mikrokontroler adalah 5 V DC, apabila kurang maupun lebih dapat mengganggu kinerja mikrokontroler bahkan dapat merusak mikrokontroler.

Hal berikutnya yang akan dilakukan adalah menghbungkan PC dengan downloader menggunakan port serial usb. Rangkaian downloader terdiri dari USB ISP, 1 buah mikrokontroler dan socket 40 pin, dan 1 buah Xtal 12 Mhz serta 2 buah *capasitor*. Untuk port ke 1 pada *header usb isp* dihubungkan ke pin ke 6 pada Atmega16, port ke 2 *header usb isp* dihubungkan ke pin Vcc Atmega 16, port ke 3 pada *header usb isp* tidak dihubungkan atau *Nc (No Connection)*, port ke 4, 6, 8, 10 pada *header usb isp* dihubungkan ke Gnd Atmega16, port ke 5 pada *header usb isp* dihubungkan ke pin ke 9 *reset* Atmega16, port ke 7 pada *header usb isp* dihubungkan ke pin 8 SCK Atmega16, dan port ke 9 pada *header usb isp* dihubungkan ke pin ke 7 MISO Atmega16.

Jika pada bagian *PROGISP* tulisannya berubah menjadi warna merah maka *USB ISP* siap dipakai. Perhatikan gambar 5.27 berikut :



Gambar 5.27 USB ISP Siap Digunakan

#### 5.3.4 Pengujian Sensor Ultrasonnik HC-SR04

Untuk pengujian sensor *ultrasonik* HC-SR04, hal yang harus dilakukan adalah mengukur tegangan keluaran (*output*) dari HC-SR04 tersebut. Untuk mengetahui sensor bekerja dengan baik, Hal berikutnya yang dilakukakn yaitu pengujian terhadap respon dari *interface* ketika sensor *ultrasonik* HC-SR04 telah terhalangi objek lalu mengirimkan data melalui mikrokontroler. Berapa lama waktu yang dibutuhkan pada *interface* untuk mengubah warna hijau menjadi warna merah.

| Nomor<br>Plot Parkir | Warna Plot parkir<br>saat kosong | Warna Plot parkir<br>saat terisi | Jarak Respon<br>pada interface |
|----------------------|----------------------------------|----------------------------------|--------------------------------|
| P1                   | Hijau                            | Merah                            | <= 5 cm                        |
| P2                   | Hijau                            | Merah                            | <= 5 cm                        |
| P3                   | Hijau                            | Merah                            | <= 5 cm                        |
| P4                   | Hijau                            | Merah                            | <= 5 cm                        |
| P5                   | Hijau                            | Merah                            | <= 5 cm                        |
| P6                   | Hijau                            | Merah                            | <= 5 cm                        |
| P7                   | Hijau                            | Merah                            | <= 5 cm                        |
| P8                   | Hijau                            | Merah                            | <= 5 cm                        |

Tabel 5.5 Pengujian Jarak Respon pada Interface

## 5.3.5 Pengujian Komunikasi Serial

Pengujian ini dilakukan untuk mengetahui apakah komunikasi antara laptop dan mikrokontroler sudah berjalan sesuai dengan semestinya. Adapun hasilnya dapat dilihat pada gambar 5.28 berikut :

| Baudrate               |         |        |       |
|------------------------|---------|--------|-------|
| COM 3                  |         |        | •     |
| erial Com Port<br>9600 |         |        | 27    |
| Samhung                | Refresh | Putpic | Tutun |

Gambar 5.28 Hasil Pengujian Dari Komunikasi Serial

| Tabel 5 | 5.6 Pen | gujian | HC-SR04 |
|---------|---------|--------|---------|
|---------|---------|--------|---------|

| No | Nilai Sensor (cm) | Nilai pada Aplikasi | Status pada<br>interface |
|----|-------------------|---------------------|--------------------------|
| 1  | 1 - 5             | Tebaca              | Merah                    |
| 2  | > 5               | Tidak Terbaca       | Hijau                    |

## 5.4 ANALISIS SISTEM SECARA KESELURUHAN

Untuk mendeteksi apabila terjadi kesalahan setelah uji coba, maka perlu dilakukan analisa rangkaian secara keseluruhan. Dari seluruh proses yang telah dilakukan, baik pengujian perangkat keras maupun perangkat lunak, dapat dikatakan bahwa alat ini dapat berfungsi sebagaimana yang penulis inginkan. Proses pembacaan sensor *ultrasonik* HC-SR04 pun tidak terjadi kesalahan pembacaan data, motor servo dapat berputar sesuai program yang di buat penulis, dan pada layar monitor dapat menampilkan *interface* yang sesuai dengan kondisi sebenarnya untuk pengendara.

Pengujian ini dilakukan untuk menunjukan bahwa sistem informasi parkir mobil berbasis *interface* ini dapat bekerja sesuai dengan tujuan dari pembuatan. Pengujian ini dilakukan dengan cara sebagai berikut :

- 1. Input tombol parkir akan membaca keadaan sensor *ultrasonik* HC-SR04 yang terhalang oleh mobil, dimana hasil dari pembacaan sensor ini akan dijadikan input pada mikrokontroler untuk diproses. Kemudian data dari mikrokontroler untuk selanjutnya akan dikirimkan ke laptop melalui rangkaian MAX 232 dimana untuk penghubung antara MAX dan laptop menggunakan *converter serial to* USB.
- 2. Apabila ada plot parkir yang masih kosong, maka aplikasi akan menampilkan *interface* dengan plot parkir berwarna hijau, sementara untuk yang sudah diisi plot akan berwarna merah dan portal terbuka. Apabila plot parkir sudah penuh, maka aplikasi tidak akan menampilkan *interface* serta portal akan tetap tertutup.